نتایج جستجو برای: رنگ آمیزی دایره یی گراف
تعداد نتایج: 26518 فیلتر نتایج به سال:
در این پایان نامه موضوع گراف های مسطح فازی و رنگ آمیزی گراف های مسطح فازی مورد مطالعه قرار گرفته است. در این رابطه برخی مباحث مربوط به گراف های مسطح قطعی به گراف های مسطح فازی تعمیم داده شده است. فصل اول، مربوط به تاریخچه ی موضوع و بیان تعاریف اساسی گراف های فازی می باشد. در فصل دوم به تعریف گراف مسطح فازی و دوگان آن، گراف چندگانه فازی، گراف مسطح فازی- 7 و دوگان آن و تعمیم قضایای مربوط به فرمول...
فرض کنیم r حلقه ای جابه جایی و یکدار باشد.در این پایان نامه گراف ایده آل های پوچ ساز یکدیگر r را مطالعه می کنیم.این گراف را با علامت (ag(r نشان می دهیم که گرافی غیر جهت دار با مجموعه رئوس a(r)*=a(r)-{(0)} است. که در آن a(r) مجموعه همه ایده آل هایی از r است که دارای پوچ ساز ناصفر باشند.دو راس iو j در این گراف مجاورند اگر و فقط اگر ij=0 به طور خلاصه مهم ترین ویژگی های مورد بررسی در این پایان نام...
عدد رنگی مساوی یک گراف با chi _=(g) نشان داده می شود و عبارت است از کوچک ترین عدد صحیح n به طوری که مجموعه رئوس گراف g ا بتوانیم به n تا مجموعه ی مستقل افراز کرد و اختلاف اندازه رئوس در هر دو مجموعه ی مستقل(کلاس رنگی) حداکثر عدد یک باشد. آستانه رنگی مساوی گراف g را با chi ^*_=(gنشان داده می شود و عبارت است از کوچک ترین عدد صحیح n به طوری که گراف g برای همه ی r geq n، r-رنگ پ...
در یک گراف g با رنگ آمیزی کلی f،c(u) مجموعه رنگ های اختصاص داده شده به راس u و یال های واقع بر راس u است، رنگ آمیزی کلی f را یک رنگ آمیزی کلی متمایزکننده ی راس مجاور از g نامیم هرگاه برای هر جفت از رئوس مجاور cf (u) ̸= cf (v) ،v و u .مینیمم تعداد رنگ های لازم برای یک رنگ آمیزی کلی متمایزکننده ی راس مجاور از g را عدد رنگی کلی متمایزکننده ی راس مجاور g می...
مفهوم عدد همبندی رنگین کمانی یکی از مفاهیم اساسی در نظریه ی گراف است که به علت کاربردهای زیاد آن در انتقال اطلاعات مورد توجه قرار گرفته است. یک رنگ آمیزی همبند رنگین کمانی از یک گراف g، یک رنگ آمیزی یالی نه لزوما معتبر از g است، به طوری که هر جفت از رئوس g توسط حداقل یک مسیر که یال های آن رنگ های متمایز از هم دارند به هم متصل اند و عدد همبندی رنگین کمانی g، کمترین تعداد رنگ مورد نیاز برای چنین...
مسئله رنگ آمیزی راسی گراف یکی از شناخته شده ترین مسائل در نظریه گراف و بهینه سازی ترکیبیاتی است. هدف این مسئله تعیین عدد رنگی گراف یعنی حداقل تعداد رنگ برای رنگ آمیزی راسی گراف و هم چنین پیدا کردن یک رنگ آمیزی برای گراف با استفاده از این تعداد رنگ است به طوری که رئوس مجاور رنگ یکسان نداشته باشند. مسئله رنگ آمیزی راسی گراف جز مسائل np-سخت است. از این رو روش های فراوانی برای حل آن ارائه شده است...
رنگ آمیزی یکی از زمینه های مهم در نظریه گراف است. رنگ آمیزی های متعددی برای گراف ها وجود دارد، به عنوان مثال می توان به رنگ آمیزی های رأسی، یالی و کلی اشاره نمود. در سال 2002، هاکمن و دیگران مفهوم [r,s,t]- رنگ آمیزی را معرفی کردند. گراف (g=(v,e با مجموعه رأس های g و مجموعه یال های e و اعداد صحیح نامنفی r,s,t را در نظر بگیرید. یک [r,s,t]- رنگ آمیزی با k رنگ یک نگاشت مانند c از (v(g)?e(g به مجموع...
رنگ آمیزی گراف ها یکی از مباحث اصلی در نظریه گراف است که هم از دیدگاه نظری و هم از دیدگاه کاربردی همواره مورد توجه بوده است. یک تخصیص رنگ به رأس های گرافg را یک رنگ آمیزی معتبر از گراف g گوییم هرگاه رأس های مجاور رنگ های متمایزی دریافت کنند. به کمترین عدد صحیح k به طوری که g یک رنگ آمیزی معتبر داشته باشد عدد رنگی گراف می گوییم و با نماد(?(g نشان می دهیم. رنگ آمیزی لیستی یا انتخاب پذیری به عنوا...
تعمیم گراف های جهت دار را با مفاهیمی از رنگ آمیزی هارمونیک و رنگ آمیزی کامل در نظر می گیریم. کران بالایی برای عدد رنگی هارمونیک گراف جهت دار ایجاد کرده و نشان می دهیم که تعیین مقدار دقیق عدد رنگی هارمونیک، برای گراف های جهت دار از درجه کراندار (در حقیقت گراف ها با ماکزیمم درجه ورودی و خروجی 2); np-hard است. پیچیدگی در مورد گراف های غیر جهت دار متناظر ناشناخته است. با در نظر گرفتن رنگ آمیزی کا...
یک یک k- رنگ آمیزی بی دور از گراف g یک k-رنگ آمیزی مجاز از g است به طوری که هر زیرگراف القایی g روی دو کلاس رنگی دلخواه از g یک جنگل است. عدد رنگی بی دور یک گراف g مینیمم kای است به طوری که g یک k-رنگ آمیزی بی دور داشته باشد. این پایان نامه، مروری بر پژوهش های انجام شده در رنگ آمیزی بی دور است. در ابتدا عدد رنگی بی دور گراف هایی از جمله گراف های حاصل ضربی شامل شبکه ها، حاصل ضرب درخت ها، اس...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید