نتایج جستجو برای: دیفرانسیل ولترای سهموی
تعداد نتایج: 3948 فیلتر نتایج به سال:
چکیده معادلات انتگرال به عنوان یکی از مهمترین ابزار های علوم پایه و فنی مهندسی، محور اصلی تحقیق در این پایان نامه می باشد. بدین منظور در ابتدا به بررسی و معرفی تحقیقات اخیر در زمینه حل عددی معادلات انتگرال می پردازیم. سپس به برخی کاربردهای این دسته از معادلات اشاره داشته، تا بدین ترتیب محققان برای مطالعات بیشتر برای ارائه راه حل های جدید و کارآمد ترغیب گردند. این مطالعه با هدف ارائه روشی جهت ت...
این پایان نامه،روش تاورا برای یافتن جواب های عددی معادلات انتگرال،برحسب چندجمله ای لژاندرارائه می دهد.معادلات انتگرال مطرح شده، معادلات انتگرال ولترای دوبعدی نوع اول به صورت خطی وغیرخطی ومعادلات انتگرال ولترای دوبعدی نوع دوم به صورت خطی و غیرخطی ومعادلات انتگرال-دیفرانسیل می باشند.ایده اصلی دراین روش استفاده ازماتریس عملیاتی برای انتگرال گیری از توابع می باشد.برای این منظورابتدا با در نظر گرفتن...
در این پایان نامه شیوه ای عددی و کارآمد برای حل معادلات انتگرال- دیفرانسیل ولترای خطی درجه ی دوم ارائه شده است. برنامه کلی این شیوه مبتنی بر فرمول های حجم مکعب و هم محلی بی اسپلاین (b – spline collection) می باشدو در کنار مثال های عددی، از آنالیز استفاده شده است. نتایج بدست آمده قابل اعتماد ،معتبر و کارآمدی الگوریتم را تأیید می کند
در این پایان نامه جواب تحلیلی معادله با مشتقات جزیی هذلولوی و سهموی با شرایط مرزی از نوع انتگرالی مورد نظر است. ابتدا مسائل مقدار مرزی اولیه ی غیر موضعی برحسب معادلات دیفرانسیل جزیی هذلولوی و سهموی با ضرایب متغیرخطی و غیرخطی غیر همگن با شرایط اولیه و مرزی غیرموضعی از نوع انتگرال را به مسائل مقدار مرزی اولیه ی دیریکله ی موضعی تبدیل می کنیم و سپس معادله را با استفاده از روش اصلاح شده ی آدومیان حل...
در این رساله جواب یک معادله انتگرال – دیفرانسیل سهموی، با یک شرط انتگرال گیری کرانه ای را مورد بررسی قرار می دهیم. ابتدا فضای مورد نیاز ( ) برای بررسی جواب این گونه معادلات را بیان کرده در ادامه با استفاده از روش گسسته سازی مسأله را به مسائل ساده تر تبدیل می کنیم و از دنباله رت برای اثبات وجود و یکتایی جواب کمک می گیریم. کارایی روش را با مسأله های خطی و غیرخطی مورد توجه قرار می دهیم. همچن...
در این پایان نامه، حل عددی معادلات (adi) سهموی دو بعدی نیز مورد مطالعه قرار گرفته است. روش برای حل این نوع از معادلات، روش فوق خلاصی متوالی فشرده می باشد که از ترکیب روش تفاضلات متناهی فشرده مرتبه ی 4 و روش فوق خلاصی متوالی به دست آمده است، یکی دیگر از اهمیت های این روش ها دقت بالای آنها می باشد که در این رساله قابل مشاهده است. کلمات کلیدی: معادلات دیفرانسیل با مشتقات جزئی، معادلات سهموی ...
در این رساله تقریب تابع سینک را بررسی نموده و حل معادلات انتگرال ولترای نوع دوم خطی و غیرخطی و معادله انتگرال فردهلم نوع دوم را با به کارگیری روش هم مکانی سینک ارائه داده و نیز به حل مسائل مقدار اولیه و مسائل مقدار مرزی مرتبه دوم خطی و غیرخطی با استفاده از این روش می پردازیم. همچنین نحوه کاربرد روش هم مکانی سینک را در حل معادلات انتگرال-دیفرانسیل ولترای مرتبه اول و مرتبه دوم خطی و غیرخطی و معاد...
در این پایان نامه ابتدا به معرفی موجک ها و مقدماتی بر آن می پردازیم و در فصل های بعدی به معرفی انواع معادلات دیفرانسیل به خصوص معادلات سهموی و هذلولوی می پردازیم. و در نهایت روش حل این دسته از معادلات را با موجک هار بیان می کنیم. و نتایج عددی حاصل از روش معرفی شده را ذکر می کنیم.
هدف این پایان نامه ارایه الگوریتم هایی جدید برای مسایل پدیده های گذرای سریع از نوع معادلات دیفرانسیل سهموی (دوبعدی و سه بعدی) می باشد. روش های حل عددی معادلات دیفرانسیل در کل دو نوع هستند: صریح و ضمنی. در روش های صریح همگرایی کند بوده و در اکثر موارد با پایداری مشروط مواجه می شویم. در روش های ضمنی با افزایش گره ها، هزینه محاسباتی نیز بالا می رود. روش های شکافت عملگر از جمله روش هایی هستند که تک...
در این پایان نامه ابتدا حسابان کسری را به طور مختصر معرفی کرده سپس به معرفی و تقسیم بندی معادلات انتگرال معمولی و کسری می پردازیم. در ادامه پس از بیان تعاریف و مفاهیم لازم درباره ی موجک ها، به طور خاص موجک هار را مورد بررسی قرار داده و به کمک این موجک و با استفاده از روش هم محلی به حل معادلات انتگرال فردهلم و ولترای کسری و نیز معادلات انتگرال- دیفرانسیل کسری می پردازیم. دیدیم که وقتی اندیس سطح ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید