نتایج جستجو برای: خودریختی های p
تعداد نتایج: 1699673 فیلتر نتایج به سال:
چکیده یک نگاشت (نه لزوماً خطی) مانند t:x?y بین فضاهای باناخ x و y یک ایزومتری 2- موضعی نامیده می شود هرگاه برای هر f,g?a، ایزمتری خطی پوشای s:x?y موجود باشد که t(x)=s(x) و t(y)=s(y). در حالتی که a یک جبر باناخ باشد، نگاشت t:a?a خودریختی 2- موضعی نامیده می شود هرگاه برای هر f,g?a، خودریختی s روی a موجود باشد که t(f)=s(f) و t(g)=s(g). در این پایان نامه که مراجع اصلی آن [af] و [hmot] می ب...
یک خود ریختی a از گروه g مرکزی است هرگاه به ازای هر x عضو g وارون x در a(x) در مرکز g باشد.مجموعه همه خودریختی های مرکزی g را با نماد aut_c(g)نمایش می دهیم. هم چنین خود ریختی aاز گروه g را خود ریختی حاشیه ای نامیم هر گاه به ازای هر x در g وارون x در a(x) عضو زیر گروه حاشیه ای g باشد.
فرض کنید یک گروه باشد. مجموعه تمام خودریختی های را با نشان می دهیم. یک خودریختی را که با هر خودریختی داخلی جا به جا شود، خودریختی مرکزی می گوییم و مجموعه همه خودریختی های مرکزی را با نشان مـی دهیم که زیرگروهی نرمال از می-باشد. اگر و دو زیـرگــروه نـرمال باشـند مجموعه تمام خودریختی هایی که را نقطه به نقطه ثابت نگه می دارند را با نمایش می دهیم. به علاوه مجموعه تمام خـودریختی هـایی که را نقطه به...
یک مسئله که نویسندگان مختلفی اخیراً در نظر گرفته اند پیدا کردن شرایط کافی روی یک نگاشت خطی است تا مطمئن باشند که یک خاصیت جبری را حفظ می کند. یک نمود از این موضوع یک نگاشت موضعی است که در هر نقطه با نگاشتی برابر است (که این نگاشت ممکن است در نقطه ای با نقطه دیگر فرق کند.) و خواص مورد نظر را حفظ کند.نمونه هایی از این نگاشت ها اشتقاق های موضعی و خودریختی های موضعی هستند که در این پایان نامه به برر...
هدف: کارآفرینی یکی از عوامل کلیدی در توسعه اقتصادی و شاخص اساسی جوامع روبهرشد است. آنچه که کارآفرین را به آغاز فعالیت ترغیب میکند، انگیزه فرایند تبدیل یک فرد عادی است میتواند فرصتهایی ایجاد کند حداکثر رساندن ثروت کمک کند. هدف این پژوهش شناسایی طبقهبندی انگیزههای کارآفرینان میباشد.طراحی/ روششناسی/ رویکرد: با رویکرد مرور نظاممند استفاده ماتریس شش سلولی دو مؤلفه جهت (کشش یا فشار) منبع (اق...
چکیده را گویا گوییم هرگاه ? : g ?? g یک گروه باشد. درونریختی g فرض کنیم ،x ? g که به ازای هر ?? موجود باشند به طوری h1, ..., hr ? z و a1, ..., ar ? g end? r(g) را با g پذیر ?? های گویای معکوس ?? گروه درونریختی .?(x) = (xa1)h1...(xar )hr است اگر وتنها اگر c ی پوچتوانی ?? توان از رده ?? پوچ g کنیم که ?? دهیم. ثابت می ?? نمایش می باشد. c ? ی 1 ?? توان از رده ?? پوچ end? r(g) g نماییم. اگر ...
فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...
چکیده ندارد.
این رساله شامل چهار فصل است: فصل اول مطالب مقدماتی نظریه گروهها آورده شده است. فصل دوم را به خواص عمومی گروه خودریختی ها و گروه خودریختی های مرکزی گروهی مفروض اختصاص یافته است.فصل سوم ویژگیهایی از -p گروههای رده ماکسیمال را مشخص می کند. در فصل چهارم، ابتدا مرتبه گروه خودریختی های بسیاری از -p گروه ها را بررسی کرده و سپس چند حکم را بیان و اثبات می شود. فصل پنجم را با اثبات ادعاهای ذکر شد...
چکیده ندارد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید