نتایج جستجو برای: جبرهای یکنواخت
تعداد نتایج: 6905 فیلتر نتایج به سال:
اولین چیزی که پس از شنیدن کلمه پیوستگی به ذهن کسی که با ریاضیات آشنایی مختصری دارد خطور می کند روش اپسیلون- دلتا می باشد, یا قضیه معروف آنالیز ریاضی که بیان می کند "یک نگاشت پیوسته است اگر و تنها اگر تصویر معکوس هر مجموعه باز (بسته), باز (بسته) باشد." پیوستگی یک خاصیت توپولوژیکی است. بعضی از توابع علاوه بر خواص توپولوژیکی دارای خواص جبری نیز هستند که پیوستگی را می توان با استفاده از آنها نیز ...
به منظور ساخت، راهاندازی و عیبیابی مقدماتی چشمه پنینگ داخلی سیکلوترون 10IRANCYC، یک مگنت الکتریکی دوقطبی با میدان مغناطیسی در حد امکان مشابه مرکز مذکور طراحی ساخته شد. این الکترومگنت که دانشکده فیزیک دانشگاه تهران شد، قادر است بزرگی 7000 گوس را محل استقرار (منطقهای شعاع 15 میلیمتر مگنت) آسانی بدون نیاز خنکسازی تأمین کند. دستیابی 1/1 تسلا نیز استفاده از برای مدت چند دقیقه امکانپذیر است...
نشان می دهیم که اگر a و i هر دو u-مدول های دو طرفه ی باناخ جابجایی باشند و a میانگین پذیر مدولی و i ایده آل بسته ی دو طرفه در a باشد، آنگاه i میانگین پذیر مدولی است سپس نشان می دهیم که اگر i ایده آل دو طرفه در نیم گروه معکوس میانگین پذیر s باشد، آنگاه i میانگین پذیر است. در ادامه بیان می کنیم که اگر s نیم گروه معکوس و e مجموعه ی عناصر خودتوان s و ~/s تصویر همومورفیک گروه s باشد، یک تناظر یک به ...
This article has no abstract.
چکیده ندارد.
در این پایان نامه قصد داریم وجود خاصیت وینر را در مورد جبر گروهی وزن دار l^1 (g,?)بررسی کنیم. برای این کار ابتدا تعریفی از وزن ارائه می کنیم.سپس وزن هایی با شرایط خاص به ویژه وزن های زیرنمایی را معرفی می کنیم و با استفاده با قضایایی ارتباط بین آنها را بررسی می کنیم. به دنبال آن تقارن l^1 (g,?) را در حالات مختلف مورد بررسی قرار می دهیم وپس از آن محاسبات تابعی را بر روی کلیه قسمت های l^1 (g,?) گس...
جبرهای خوشه ای- اریب، حلقه های درون ریختی از اشیاء اریب t در رسته های خوشه ای هستند. یک جبر خوشه ای-اریب را، خوشه ای پنهانی می نامیم، هرگاه t یک مدول پیش تصویری و اریب باشد؛ برای مثال، همه ی جبرهای خوشه ای-اریب نمایش متناهی، جبرهای خوشه ای پنهانی هستند. در این پایان نامه نشان می دهیم که اگر c یک جبر خوشه ای- اریب نمایش متناهی باشد، آن گاه c-مدول های تجزیه ناپذیر توسط بردارهای بعدی مشخص می شوند.
چکیده. فرض کنیم یک فضای متریک فشرده و یک زیرمجموعه ی فشرده ی ناتهی باشد. فرض کنیم و جبر باناخ همه ی توابع مختلط - مقدار پیوسته بر را نشان دهد که
فرض کنیم ? و? در نگاشت پوشا بین جبرهای عملگری استاندارد ? و ? روی فضاهای باناخ ? و ? باشند که در شرط "??" ("?" (f)?(g) )="??" (fg) برای هر ? f,g? صدق می کنند (در اینجا (.) "??" نمایانگر طیف مرزی است). نشان داده می شود ? و? یا به صورت ?(t)=a_2 ta_1^(-1) و ?(t)=a_1 ta_2^(-1) ، ???، هستند که در آن a_1 و a_2 عملگرهای خطی کراندار دوسویی از ? به ? هستند یا به صورت ?(t)=b_2 t^* b_1^(-1) و ?(t)=b_1 t^*...
فرض کنید یک جبر باناخ دوگان با پیش دوگان باشد. جملات زیر را در نظر بگیرید (a) کن- میانگین پذیر است. (b) یک قطر اصلی نرمال دارد. (c) یک - دومدول انژکتیو است. برای همه ها مشخص شده است که (b)، (a) را نتیجه می دهد، نشان می دهیم که (c) همواره (b) را نتیجه می دهد در حالی که عکس آن برای ، که در آن گروه موضعا فشرده نامتناهی است، نادرست است. در پایان ما تعریف یک قطر اصلی نرمال را تغییر خواهیم داد و با ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید