نتایج جستجو برای: توابع نزدیک به محدب
تعداد نتایج: 688596 فیلتر نتایج به سال:
در این پایان نامه به مطالعه روش جدید ?-تقریب برای حل مسائل برنامه ریزی غیرخطی شامل توابع محدب پایا، محدب پایای تعمیم یافته و روشی برای حل برنامه ریزی چندهدفه توسط اصلاح تابع هدف مسئله می پردازیم. ابتدا تعاریف و نتایجی درباره ی توابع محدب پایا، محدب پایای تعمیم یافته و مسائل بهینه سازی برداری را ارائه می دهیم. هم چنین شرایط لازم و کافی را برای بهینه بودن یک نقطه شدنی در این مسائل بهینه سازی بررس...
در این پایان نامه نرم مشتق شبه شوارتزین در زیرکلاسهای خاصی از توابع تک ارز مانند کلاس توابع ستاره گون از مرتبه ی آلفا،توابع محدب از مرتبه ی آلفا، توابع فنرگون معرفی می شود. سپس این نرم در زیرکلاسهای آلفا فنرگون، توابع بطور یکنواخت محدب و توابع به طور یکنواخت ستاره گون بدست می آید. سپس عملگر جدیدی معرفی می شود که عملگرهای دیگری مانند عملگر الکساندر،مشتق کسری و انتگرال کسری را شامل می شود.در نهای...
این پایان نامه شامل سه فصل است : در بخش اول از فصل اول نگاشتهای چندمقداری ، نگاشتهای چند مقداری محدب و مطالبی که در سایر بخشها به آنها نیاز است معرفی می شود. در بخش دوم قضایای نگاشت بازوگراف بسته برای نگاشتهای چندمقداری محدب را می آرویم. فصل دوم اساسی ترین فصل پایان نامه است که در بخش اول آن نگاشتهای چند مقداری نیم محدب و توابع نیم محدب معرفی خواهند شد و سپس مسائلی را در مورد نگاشتهای چندمقداری...
در این پایان نامه، ابتدا نگاهی اجمالی به اندازه ها، مرکز جرم سادکها، و ارتباط بین تحدب و پیوستگی یک تابع روی مجموعه محدب داریم. در فصل دوم قضیه چکوست را بیان و اثبات می کنیم و به بررسی نامساوی هرمیت- هادامارد برای توابع چند متغیره تعریف شده روی سادکها می پردازیم ودر آخر با استفاده از توابع آفین، اثباتی از نامساوی هرمیت-هادامارد بیان و با معرفی یک فرم درجه دوم، روشی برای تقریب انتگرال توابع محدب...
تابع d.c که نام ان از تفاضل محدب گرفته شده است در واقع تفاضل دو تابع محدب پیوسته روی فضای خطی نرمدار می باشددر این پایان نامه سعی شده که شرایطی را که در آن توابع دلتا محدب پایدار می مانند را بیان کندو با بررسی وتقویت نقاط برجسته مقالات کوشش شده که ویژگی های توابع d.c برای استفاده در بهینه سازی و آنالیز هر چه بیشتر گردآوری شود.
در این پایان نامه پس از ذکر مقدماتی از آنالیز تابعی ناارشمیدسی به بررسی چند توپولوژی موضعاً محدب روی فضای توابع پیوسته و توابع پیوسته ی کراندار با مقادیر در یک فضای موضعاً محدب ناارشمیدسی می پردازیم. به ویژه برخی خواص توپولوژیک این فضا تحت توپولوژی اکید را بررسی می کنیم.
در این پایان نامه به بیان تعاریف و قضایای مربوط به رده هایی از توابع ستاره گون k-تایی و توابع محدب k-تایی می پردازیم. همچنین با معرفی چند عملگر انتگرال برخی از خواص آنها را روی رده های مذبور مورد مطالعه قرار می دهیم و معیارهایی برای تک ارزی عملگرهای انتگرال روی توابع تحلیلی در دیسک یکه باز را بررسی می کنیم.
فضاهای برداری توپولوژیکی موضعاً محدب بر یک شبه میدان توپولوژیکی نرم پذیرند . با استفاده از این نرم عملگرهای باناخ وتوابع انبساط ناپذیر تعریف می شوند و چند قضیه نقطه ثابت اثبات می گردند . همچنین برای فضاهای اکیداً محدب نشان داده می شود که تحت شرطهای مناسب مجموعه ی نقاط ثابت یک تابع انبساط ناپذیر یک تو کشیده ی انبساط ناپذیر است.
عملگرهای یکنوای ماکسیمال و توابع محدب و نیم پیوسته پایینی به روش های متفاوتی با هم در ارتباط می باشند. یک قضیه مربوط به فیتزپاتریک نمایشی برای یک عملگر یکنوای ماکسیمال دلخواه روی یک فضای باناخ ارائه می دهد. ما نمایش عملگرهای یکنوای ماکسیمال توسط توابع محدب و نیم پیوسته پایینی را به عملگرهای یکنوا گسترش می دهیم و نشان خواهیم داد که در فضاهای متناهی البعد عملگرهای یکنوایی که یک نمایش محدب دارند، ...
معرفی تابع ستاره گون و محدب و nامین ریشه های آنها و تابع جانفسکی و زیر کلاسهایی از توابع به طور یکنواخت محدب
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید