the zero-divisor graph of a commutative ring r with respect to nilpotent elements is a simple undirected graph $gamma_n^*(r)$ with vertex set z_n(r)*, and two vertices x and y are adjacent if and only if xy is nilpotent and xy is nonzero, where z_n(r)={x in r: xy is nilpotent, for some y in r^*}. in this paper, we investigate the basic properties of $gamma_n^*(r)$. we discuss when it will be eu...