نتایج جستجو برای: two dimensional acoustic wave equation
تعداد نتایج: 3032564 فیلتر نتایج به سال:
The Lippmann–Schwinger equation is an integral equation formulation for acoustic and electromagnetic scattering from an inhomogeneous medium and quantum scattering from a localized potential. We present the sparsifying preconditioner for accelerating the iterative solution of the Lippmann–Schwinger equation. This new preconditioner transforms the discretized Lippmann–Schwinger equation into spa...
A method for photoacoustic tomography is presented that uses circular integrals of the acoustic wave for the reconstruction of a three-dimensional image. Image reconstruction is a two-step process: In the first step data from a stack of circular integrating are used to reconstruct the circular projection of the source distribution. In the second step the inverse circular Radon transform is appl...
The behavior of linear and nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma including inertialess electrons and positrons, ions, and mobile positive/negative dust grains are studied. Reductive perturbation method is employed for small and finite amplitude DAWs. To investigate the solitary waves, the Korteweg–de Vries (KdV) equation is derived and the solution is presented. B...
We present a review of the normal form theory for weakly dispersive nonlinear wave equations where the leading order phenomena can be described by the KdV equation. This is an infinite dimensional extension of the well-known Poincaré-Dulac normal form theory for ordinary differential equations. We also provide a detailed analysis of the interaction problem of solitary waves as an important appl...
A new parabolic equation is derived to describe the propagation of nonlinear sound waves in inhomogeneous moving media. The equation accounts for diffraction, nonlinearity, absorption, scalar inhomogeneities (density and sound speed), and vectorial inhomogeneities (flow). A numerical algorithm employed earlier to solve the KZK equation is adapted to this more general case. A two-dimensional ver...
On the basis of the continuity equation and the Bernoulli equation in the steady form, a differential equation is developed to evaluate the successive water levels within compartments of an upright perforated wave absorber. Then the initial and boundary conditions are introduced and the differential equation is solved as an initial value problem. Finally the reflection coefficient from the wave...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید