A signed Roman dominating function on the digraphD is a function f : V (D) −→ {−1, 1, 2} such that ∑ u∈N−[v] f(u) ≥ 1 for every v ∈ V (D), where N−[v] consists of v and all inner neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an inner neighbor v for which f(v) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on D with the property that ∑d i=1 fi(...