نتایج جستجو برای: total double roman domination
تعداد نتایج: 1040738 فیلتر نتایج به سال:
In his article published in 1999, Ian Stewart discussed a strategy of Emperor Constantine for defending the Roman Empire. Motivated by this article, Cockayne et al.(2004) introduced the notion of Roman domination in graphs. Let G = (V,E) be a graph. A Roman dominating function of G is a function f : V → {0, 1, 2} such that every vertex v for which f(v) = 0 has a neighbor u with f(u) = 2. The we...
Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value ω(f) = ∑ v∈V f(v). The k-distance Roman domination number ...
A subset X of edges of a graph G is called an edge dominating set of G if every edge not in X is adjacent to some edge in X . The edge domination number γ′(G) of G is the minimum cardinality taken over all edge dominating sets of G. An edge Roman dominating function of a graph G is a function f : E(G) → {0, 1, 2} such that every edge e with f(e) = 0 is adjacent to some edge e′ with f(e′) = 2. T...
A function f : V (G) → {0, 1, 2} is a Roman dominating function if for every vertex with f(v) = 0, there exists a vertex w ∈ N(v) with f(w) = 2. We introduce two fractional Roman domination parameters, γR ◦ f and γRf , from relaxations of two equivalent integer programming formulations of Roman domination (the former using open neighborhoods and the later using closed neighborhoods in the Roman...
A double Roman dominating function of a graph $G$ is $f:V(G)\rightarrow \{0,1,2,3\}$ having the property that for each vertex $v$ with $f(v)=0$, there exists $u\in N(v)$ $f(u)=3$, or are $u,w\in $f(u)=f(w)=2$, and if $f(v)=1$, then adjacent to assigned at least $2$ under $f$. The domination number $\gamma_{dR}(G)$ minimum weight $f(V(G))=\sum_{v\in V(G)}f(v)$ among all functions $G$. An outer i...
The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید