نتایج جستجو برای: total domination polynomial
تعداد نتایج: 899455 فیلتر نتایج به سال:
The domination number of a graph G = (V,E) is the minimum size of a dominating set U ⊆ V , which satisfies that every vertex in V \ U is adjacent to at least one vertex in U . The notion of a problem kernel refers to a polynomial time algorithm that achieves some provable reduction of the input size. Given a graph G whose domination number is k, the objective is to design a polynomial time algo...
We consider two general frameworks for multiple domination, which are called 〈r, s〉-domination and parametric domination. They generalise and unify {k}-domination, k-domination, total k-domination and k-tuple domination. In this paper, known upper bounds for the classical domination are generalised for the 〈r, s〉-domination and parametric domination numbers. These generalisations are based on t...
Let γ(G) and ι(G) be the domination and independent domination numbers of a graph G, respectively. Introduced by Sumner and Moorer [23], a graph G is domination perfect if γ(H) = ι(H) for every induced subgraph H ⊆ G. In 1991, Zverovich and Zverovich [26] proposed a characterization of domination perfect graphs in terms of forbidden induced subgraphs. Fulman [15] noticed that this characterizat...
In this paper, we continue the study of the domination game in graphs introduced by Brešar, Klavžar, and Rall [SIAM J. Discrete Math. 24 (2010) 979–991]. We study the total version of the domination game and show that these two versions differ significantly. We present a key lemma, known as the Total Continuation Principle, to compare the Dominator-start total domination game and the Staller-st...
In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...
The convex domination number and the weakly convex domination number are new domination parameters. In this paper we show that the decision problems of convex and weakly convex dominating sets are NP -complete for bipartite and split graphs. Using a modified version of Warshall algorithm we can verify in polynomial time whether a given subset of vertices of a graph is convex or weakly convex.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید