نتایج جستجو برای: total dominating set
تعداد نتایج: 1421454 فیلتر نتایج به سال:
A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by γt. The maximal size of an inclusionwise minimal total dominating set, the upper total domination num...
The complete cototal domination set is said to be irredundant dominating if for each u ∈ S, NG [S − {u}] ≠ [S]. minimum cardinality taken over all an called number and denoted by γircc(G). Here a new parameter was introduced the study of bounds γircc(G) initiated.
The disjoint total domination number of a graph G is the minimum cardinality of the union of two disjoint total dominating sets in G. We also consider an invariant the minimum cardinality of the disjoint union of a dominating set and a total dominating set. In this paper, we initiate a study of these parameters.
A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the min...
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
A set D of vertices in a graph G is a dominating set if every vertex in V −D is adjacent to some vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A dominating set D of a graph G is total dominating set if the induced subgraph 〈D〉 has no isolated vertices. In this paper, we introduce the total co-independent domination in graphs, exact value for some s...
A total dominating set of a graph G = (V, E) with no isolated vertex is a set S ⊆ V such that every vertex is adjacent to a vertex in S. A total dominating set S of a graph G is a locating-total dominating set if for every pair of distinct vertices u and v in V − S, N(u) ∩ S 6= N(v) ∩ S, and S is a differentiating-total dominating set if for every pair of distinct vertices u and v in V , N [u]∩...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید