نتایج جستجو برای: tadmor method
تعداد نتایج: 1630180 فیلتر نتایج به سال:
We present a new third-order, semidiscrete, central method for approximating solutions to multidimensional systems of hyperbolic conservation laws, convection-diffusion equations, and related problems. Our method is a high-order extension of the recently proposed second-order, semidiscrete method in [A. Kurgonov and E. Tadmor, J. Comput Phys., 160 (2000) pp. 241–282]. The method is derived inde...
We propose a new spectral viscosity (SV) scheme for the accurate solution of nonlinear conservation laws. It is proved that the SV solution converges to the unique entropy solution under appropriate reasonable conditions. The proposed SV scheme is implemented directly on high modes of the computed solution. This should be compared with the original nonperiodic SV scheme introduced by Maday, Oul...
Abstract. We introduce and analyze a spectral vanishing viscosity approximation of periodic fractional conservation laws. The fractional part of these equations can be a fractional Laplacian or other non-local operators that are generators of pure jump Lévy processes. To accommodate for shock solutions, we first extend to the periodic setting the Kružkov-Alibaud entropy formulation and prove we...
Nonoscillatory central schemes are a class of Godunov-type (i.e., shock-capturing, finite volume) numerical methods for solving hyperbolic systems of conservation laws (e.g., the Euler equations of gas dynamics). Throughout the last decade, central (Godunov-type) schemes have gained popularity due to their simplicity and efficiency. In particular, the latter do not require the solution of a Rie...
We present the first fifth-order, semi-discrete central-upwind method for approximating solutions of multi-dimensional Hamilton–Jacobi equations. Unlike most of the commonly used high-order upwind schemes, our scheme is formulated as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov–Tadmor and Kurganov– Noelle–Petrova, and is derived for an arbitrary number of space dimension...
In this work, we discuss kinetic descriptions of flocking models, of the so-called CuckerSmale [4] and Motsch-Tadmor [10] types. These models are given by Vlasov-type equations where the interactions taken into account are only given long-range bi-particles interaction potential. We introduce a new exact rescaling velocity method, inspired by the recent work [6], allowing to observe numerically...
We discuss determination of jumps for functions with generalized bounded variation. The questions are motivated by A. Gelb and E. Tadmor [1], F. Móricz [5] and [6] and Q. L. Shi and X. L. Shi [7]. Corollary 1 improves the results proved in B. I. Golubov [2] and G. Kvernadze [3].
The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM ’07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservati...
Bipolar semiconductor device 2D FDTD modelling suited to parallel computing is investigated in this paper. The performance of a second order explicit approximation, namely the Nessyahu-Tadmor scheme (NT2) associated with the decomposition domain method, are compared to a classical quasi-linear implicit one based on the Alternating Direction Implicit method (ADI). The comparison is performed bot...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید