نتایج جستجو برای: strongly gx j clean rings
تعداد نتایج: 558903 فیلتر نتایج به سال:
in this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. next, we investigate some properties of such rings. we prove that mn(r) is n-f-clean for any n-f-clean ring r. we also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.
In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.
A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...
Let R be a commutative ring and G(R) be a graph with vertices as proper andnon-trivial ideals of R. Two distinct vertices I and J are said to be adjacentif and only if I + J = R. In this paper we study a graph constructed froma subgraph G(R)Δ(R) of G(R) which consists of all ideals I of R such thatI Δ J(R), where J(R) denotes the Jacobson radical of R. In this paper westudy about the relation b...
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
Let $f:A\rightarrow B$ be a ring homomorphism and $K$ an ideal of $B$. Many variations the notions clean nil-clean rings have been studied by variety authors. We investigate strongly $\pi$-regular clean-like properties amalgamation $A\bowtie^{f}K$ $A$ with $B$ along respect to $f$.
Throughout this paper R denotes an associative ring with identity and all modules are unitary. We use the symbol U(R) to denote the group of units of R and Id(R) the set of idempotents of R, Un(R) the set of elements which are the sum of n units of R, UΣ(R) the set of elements each of which is the sum of finitely many units in R, RE(R) (URE(R)) the set of regular (unit regular) elements of R, a...
let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...
let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید