We reduce the basis construction problem for Hopf algebras generated by skew-primitive semi-invariants to a study of special elements, called “super-letters,” which are defined by Shirshov standard words. In this way we show that above Hopf algebras always have sets of PBW-generators (“hard” super-letters). It is shown also that these Hopf algebras having not more than finitely many “hard” supe...
We review some applications of Gröbner-Shirshov bases, including PBW theorems, linear bases of free universal algebras, normal forms for groups and semigroups, extensions of groups and algebras, embedding of algebras.
We investigate deformations of a skew group algebra that arise from a finite group acting on a polynomial ring. When the characteristic of the underlying field divides the order of the group, a new type of deformation emerges that does not occur in characteristic zero. This analogue of Lusztig’s graded affine Hecke algebra for positive characteristic can not be forged from the template of sympl...