نتایج جستجو برای: signed roman k dominating function
تعداد نتایج: 1571544 فیلتر نتایج به سال:
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
3 A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed domi4 nating function if for any vertex v the sum of function values over its closed neighborhood 5 is at least one. The signed domination number γs(G) of G is the minimum weight of a 6 signed dominating function on G. By simply changing “{+1,−1}” in the above definition 7 to “{+1, 0,−1}”, we can define the minus ...
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. For a given graph,...
A two-valued function f defined on the vertices of a graph G = (V,E), f : V → {−1, 1}, is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. That is, for every v ∈ V, f(N(v)) ≥ 1, where N(v) consists of every vertex adjacent to v. The weight of a total signed dominating function is f(V ) = ∑ f(v), over all vertices v ∈ V . The total ...
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number of G, γR(G), is the minimum weight of a Roman dominating function on G. In this paper, we...
Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ j for each x...
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. In this paper, we s...
A subset X of edges of a graph G is called an edge dominating set of G if every edge not in X is adjacent to some edge in X . The edge domination number γ′(G) of G is the minimum cardinality taken over all edge dominating sets of G. An edge Roman dominating function of a graph G is a function f : E(G) → {0, 1, 2} such that every edge e with f(e) = 0 is adjacent to some edge e′ with f(e′) = 2. T...
If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.
A Roman dominating function on a graph G = (V, E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V ) = ∑ u∈V f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this pape...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید