نتایج جستجو برای: s kernel

تعداد نتایج: 757959  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ایلام - دانشکده علوم انسانی و پایه 1387

پس از گردآوری اطلاعات مورد نیاز، مولکول ها در نرم افزارhyper chem رسم و با روش نیمه تجربی و با استفاده از الگوریتم فلتچر- ریوز ساختارها بهینه و توسط نرم افزار dragonتوصیف کننده های هر مولکول محاسبه شد. برای حذف همبستگی توصیف کننده های مشابه، برنامه ای در نرم افزارmatlab نوشته شده و این توصیف کننده ها حذف گردیدند. سپس با استفاده ازنرم افزار matlab برنامه انواع مدل های خطی کمترین مربعات جزئی که ش...

1997
Luc Devroye

In earlier work with Gabor Lugosi, we introduced a method to select a smoothing factor for kernel density estimation such that, for all densities in all dimensions, the L1 error of the corresponding kernel estimate is not larger than 3 + e times the error of the estimate with the optimal smoothing factor plus a constant times Ov~--~-n/n, where n is the sample size, and the constant only depends...

Journal: :Math. Comput. 2004
Richard P. Groenewegen

The tame kernel of the K2 of a number field F is the kernel of some explicit map K2F → ⊕ k∗ v , where the product runs over all finite primes v of F and kv is the residue class field at v. When S is a set of primes of F , containing the infinite ones, we can consider the S-unit group US of F . Then US ⊗ US has a natural image in K2F . The tame kernel is contained in this image if S contains all...

Journal: :Communications in Mathematical Physics 2021

The Pearcey kernel is a classical and universal arising from random matrix theory, which describes the local statistics of eigenvalues when limiting mean eigenvalue density exhibits cusp-like singularity. It appears in variety statistical physics models beyond as well. We consider Fredholm determinant trace class operator acting on $L^2\left(-s, s\right)$ with kernel. Based steepest descent ana...

2008
Andreas Zell G Hinselmann NH Fechner A Jahn

Kernel based machine learning methods like support vector machines or gaussian processes have gained increasing attention for QSAR modelling in recent years. One of the most interesting aspects of this method is the analogy between the kernel and a similarity measure. Each similarity measure that fulfils the kernel properties can be used as a kernel. But despite the possibility to incorporate s...

Journal: :Open Mathematics 2021

Abstract In 2018, Bai, Fujita and Zhang [Discrete Math. 341 (2018), no. 6, 1523–1533] introduced the concept of a kernel by rainbow paths (for short, RP-kernel) an arc-coloured digraph D D , which is subset S S vertices such that ( a ) there exists no path for any pair distinct b ...

1991
D. Probert J. L. Bruno M. Karaorman

Object-oriented operating systems, as well as conventional O/S designs, present an overly restrictive level of abstraction to the programmer. Models of objects, processes, concurrency, etc., are embedded within the system in such a way that they are di cult to extend or replace. SPACE is an extensible operating system being developed for research into object-oriented and distributed systems des...

2000
A. Averbuch E. Braverman R. Coifman Leslie F. Greengard

The integral ∫ L 0 e iνφ(s,t)f (s) ds with a highly oscillatory kernel (large ν, ν is up to 2000) is considered. This integral is accurately evaluated with an improved trapezoidal rule and effectively transcribed using local Fourier basis and adaptive multiscale local Fourier basis. The representation of the oscillatory kernel in these bases is sparse. The coefficients after the application of ...

2008
JOSEPH A. BALL

The operator-valued Schur-class is defined to be the set of holomorphic functions S mapping the unit disk into the space of contraction operators between two Hilbert spaces. There are a number of alternate characterizations: the operator of multiplication by S defines a contraction operator between two Hardy Hilbert spaces, S satisfies a von Neumann inequality, a certain operator-valued kernel ...

ژورنال: پژوهش های ریاضی 2019

One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of  kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید