نتایج جستجو برای: resistance distance in graphs
تعداد نتایج: 17088695 فیلتر نتایج به سال:
a set $s$ of vertices in a graph $g=(v,e)$ is called a total$k$-distance dominating set if every vertex in $v$ is withindistance $k$ of a vertex in $s$. a graph $g$ is total $k$-distancedomination-critical if $gamma_{t}^{k} (g - x) < gamma_{t}^{k}(g)$ for any vertex $xin v(g)$. in this paper,we investigate some results on total $k$-distance domination-critical of graphs.
let $g=(v,e)$ be a connected graph. the eccentric connectivity index of $g$, $xi^{c}(g)$, is defined as $xi^{c}(g)=sum_{vin v(g)}deg(v)ec(v)$, where $deg(v)$ is the degree of a vertex $v$ and $ec(v)$ is its eccentricity. the eccentric distance sum of $g$ is defined as $xi^{d}(g)=sum_{vin v(g)}ec(v)d(v)$, where $d(v)=sum_{uin v(g)}d_{g}(u,v)$ and $d_{g}(u,v)$ is the distance between $u$ and $v$ ...
the $k$-th semi total point graph $r^k(g)$ of a graph $g$, is a graph obtained from $g$ by adding $k$ vertices corresponding to each edge and connecting them to endpoint of edge considered. in this paper, we obtain formulae for the resistance distance and kirchhoff index of $r^k(g)$.
The graphical notion of effective resistance has found wide-ranging applications in many areas of pure mathematics, applied mathematics and control theory. By the nature of its construction, effective resistance can only be computed in undirected graphs and yet in several areas of its application, directed graphs arise as naturally (or more naturally) than undirected ones. In part I of this wor...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید