نتایج جستجو برای: reisner ideal
تعداد نتایج: 86956 فیلتر نتایج به سال:
We survey some recent results on the minimal graded free resolution of a square-free monomial ideal. The theme uniting these results is the point-of-view that the generators of a monomial ideal correspond to the maximal faces (the facets) of a simplicial complex ∆. This correspondence gives us a new method, distinct from the Stanley-Reisner correspondence, to associate to a square-free monomial...
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
This paper produces a recursive formula of the Betti numbers of certain Stanley-Reisner ideals (graph ideals associated to forests). This gives a purely combinatorial definition of the projective dimension of these ideals, which turns out to be a new numerical invariant of forests. Finally, we propose a possible extension of this invariant to general graphs. 0. Introduction Throughout this pape...
We develop an algebraic theory of supports for \(R\)-linear codes fixed length, where \(R\) is a finite commutative unitary ring. A support naturally induces notion generalized weights and allows one to associate monomial ideal code. Our main result states that, under suitable assumptions, the code can be obtained from graded Betti numbers its associated ideal. In case \(\mathbb{F}_q\)-linear e...
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose Stanley–Reisner ring has a linear resolution. It turns out that the Stanley–Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres arising naturally from commutative algebra whose Stanley–Reisner rings satisf...
A squarefree module over a polynomial ring S = k[x1, . . . , xn] is a generalization of a Stanley-Reisner ring, and allows us to apply homological methods to the study of monomial ideals more systematically. The category Sq of squarefree modules is equivalent to the category of finitely generated left Λ-modules, where Λ is the incidence algebra of the Boolean lattice 2. The derived category D(S...
Combinatorial commutative algebra is a branch of combinatorics, discrete geometry, and commutative algebra. On the one hand, problems from combinatorics or discrete geometry are studied using techniques from commutative algebra; on the other hand, questions in combinatorics motivated various results in commutative algebra. Since the fundamental papers of Stanley (see [13] for the results) and H...
We recall numerical criteria for Cohen–Macaulayness related to system of parameters and introduce monomial ideals König type which include the edge graphs. show that a ideal is if only its corresponding residue class ring admits whose elements are form $$x_i-x_j$$ . This provides an algebraic characterization use this special parameter systems study graphs order complex certain family posets. F...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید