نتایج جستجو برای: recurrent fuzzy neural network rfnn

تعداد نتایج: 1018796  

2005
Shulan Lu Derek Harter

This study investigates whether people represent the beginnings and ends of events as fuzzy temporal frames and subsequently construct event temporal relations. The study adopted Allen’s (1984; 1991) seven logical categories of temporal relations. Constructing the seven relations often requires the accurate encoding and (or) retrieval of the beginnings and ends of events. We used a recurrent ne...

2005
Cheng-Jian Lin Cheng-Hung Chen

In this paper, a Pseudo-Gaussian-based Recurrent Compensatory Fuzzy Neural Network (PG-RCFNN) is proposed for identification of dynamic systems. The recurrent network is embedded in the PG-RCFNN by adding feedback connections in the second layer, where the feedback units act as memory elements. The compensatorybased fuzzy reasoning method is using adaptive fuzzy operations of fuzzy neural netwo...

Journal: :international journal of industrial mathematics 0
m. mosleh department of mathematics, firoozkooh branch, islamic azad university, firoozkooh, iran.

in this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. utilizing the generalized characterization theorem. then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. here neural network is considered as a part of large eld called n...

Journal: :international journal of industrial mathematics 0
m. othadi department of mathematics, firoozkooh branch, islamic azad university, firoozkooh, iran. m. mosleh department of mathematics, firoozkooh branch, islamic azad university, firoozkooh, iran.

the hybrid fuzzy differential equations have a wide range of applications in science and engineering. we consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. here neural network is considered as a part of large eld called neural computing or soft computing. the proposed algorithm is illustrated by numerical examples and the resu...

Journal: :journal of computer and robotics 0
mohammad talebi motlagh department of systems and control, industrial control center of excellence, k.n.toosi university of technology, tehran, iran hamid khaloozadeh department of systems and control, industrial control center of excellence, k.n.toosi university of technology, tehran, iran

modelling and forecasting stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. this nonlinearity affects the efficiency of the price characteristics. using an artificial neural network (ann) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

Journal: :IEEE Trans. Fuzzy Systems 2002
Chia-Feng Juang

In this paper, a TSK-type recurrent fuzzy network (TRFN) structure is proposed. The proposal calls for a design of TRFN by either neural network or genetic algorithms depending on the learning environment. Set forth first is a recurrent fuzzy network which develops from a series of recurrent fuzzy if–then rules with TSK-type consequent parts. The recurrent property comes from feeding the intern...

In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...

Journal: :journal of medical signals and sensors 0
monire sheikh hosseini maryam zekri

image classification is an issue which utilizes image processing, pattern recognition and classification methods. automatic medical image classification is a progressive area in image classification and it expected to be more developed in the future. due to this fact that automatic diagnosis which use intelligent methods such as medical image classification can assist pathologists by providing ...

In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...

Journal: :iranian journal of fuzzy systems 2014
m. syed ali

in this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the takagi-sugeno (t-s) fuzzy models is considered. a novel linear matrix inequality (lmi)-based stability criterion is obtained by using lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید