نتایج جستجو برای: radial basis function rbf

تعداد نتایج: 1583750  

Abstract In this research, a radial basis function artificial neural network (RBF-ANN) model was developed to predict the hot deformation flow curves of API X65 pipeline steel. The results of the developed model was compared with the results of a new phenomenological model that has recently been developed based on a power function of Zener-Hollomon parameter and a third order polynomial functio...

M. Mohamadianb , N. Valizadeh, S. Shojaee,

In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...

2006
Yuehui Chen Lizhi Peng Ajith Abraham

Hierarchical neural networks consist of multiple neural networks assembled in the form of an acyclic graph. The purpose of this study is to identify the hierarchical radial basis function neural networks and select important input features for each sub-RBF neural network automatically. Based on the pre-defined instruction/operator sets, a hierarchical RBF neural network can be created and evolv...

1993
Philippe Gentric Heini C. A. M. Withagen

We present a new constructive algorithm for building Radial-Basis-Function (RBF) network classiiers and a tree based associated algorithm for fast processing of the network. This method, named Constructive Tree Radial-Basis-Function (CTRBF), allows to build and train a RBF network in one pass over the training data set. The training can be in supervised or unsupervised mode. Furthermore, the al...

In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز 1389

به منظور تخمین زمانی- مکانی مقدار بارش ماهیانه، با توجه به پیچیدگی پدیده و در دسترس نبودن اطلاعات فیزیکی کافی و عدم اطلاع دقیق از روابط و معادلات ریاضی حاکم بر مسئله، معمولاً به سراغ ارائ? مدلهای جعبه سیاه، که مستقل از پارامترهای فیزیکی موثر بر پدیده و معادلات حاکم بین آنها می باشد، باید رفت. در این پایان نامه مدلی ترکیبی و جعبه سیاه تحت عنوان ann-rbf به منظور تخمین زمانی- مکانی مقدار بارش ماهی...

2010
H. Al-Duwaish

This paper presents a new neural network based controller design for multivariable systems. The proposed controller is designed using radial basis function (RBF) neural network. Weight update equation using classical least mean square principle is derived for the RBF network. The controller generates optimal control signals abiding by constraints, if any, on the control signals. Simulation resu...

Journal: :iranian journal of materials forming 0
m. rakhshkhorshid department of mechanical engineering, birjand university of technology, pobox 97175-569, birjand, iran

abstract in this research, a radial basis function artificial neural network (rbf-ann) model was developed to predict the hot deformation flow curves of api x65 pipeline steel. the results of the developed model was compared with the results of a new phenomenological model that has recently been developed based on a power function of zener-hollomon parameter and a third order polynomial functio...

2000
Friedhelm Schwenker Hans A. Kestler Günther Palm

We present different training algorithms for radial basis function (RBF) networks and the behaviour of RBF classifiers in three different pattern recognition applications is presented: the classification of 3-D visual objects, highresolution electrocardiograms and handwritten digits.

2012
VACLAV SKALA

Radial Basis Functions (RBF) interpolation theory is briefly introduced at the “application level” including some basic principles and computational issues. The RBF interpolation is convenient for un-ordered data sets in n-dimensional space, in general. This approach is convenient especially for a higher dimension N 2 conversion to ordered data set, e.g. using tessellation, is computationally v...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید