نتایج جستجو برای: quasi nonexpansive mapping
تعداد نتایج: 282521 فیلتر نتایج به سال:
Recently, Chang, et al introduce the concept of total asymptotically nonexpansive mapping which contain the asymptotically nonexpansive mapping. The purpose of the paper is to analyze a three-step iterative scheme for total asymptotically nonexpansive mapping in uniformly convex hyperbolic spaces. Meanwhile, we obtain a ∆-convergence theorem of the three-step iterative scheme for total asymptot...
We introduce an iterative algorithm for finding a common element of the set of common fixed points of a finite family of closed quasi-φ-asymptotically nonexpansive mappings, the set of solutions of an equilibrium problem, and the set of solutions of the variational inequality problem for a γ-inverse strongly monotone mapping in Banach spaces. Then we study the strong convergence of the algorith...
in this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regularasymptotically nonexpansive mappings in a real reflexive banach space with a uniformly g$hat{a}$teaux differentiable norm. our result is applicable in $l_{p}(ell_{p})$ spaces,$1 < p
We introduce viscosity approximations by using the shrinking projection method established by Takahashi, Takeuchi, and Kubota, for finding a common element of the set of solutions of the generalized equilibrium problem and the set of fixed points of a quasi-nonexpansive mapping. Furthermore, we also consider the viscosity shrinking projection method for finding a common element of the set of so...
We present the strong convergence theorem for the iterative scheme for finding a common element of the fixed-point set of a quasi-nonexpansive mapping and the zero set of the sums of maximal monotone operators in Hilbert spaces. Our results extend and improve the recent results of Takahashi et al. (J. Optim. Theory Appl. 147:27-41, 2010) and Takahashi and Takahashi (Nonlinear Anal. 69:1025-1033...
The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...
Let C be a nonempty closed convex subset of a real Banach space E. Let S : C → C be a quasi-nonexpansive mapping, let T : C → C be an asymptotically demicontractive and uniformly Lipschitzian mapping, and let F := {x ∈ C : Sx = x and Tx = x} 6 = ∅. Let {xn}n≥0 be the sequence generated from an arbitrary x0 ∈ C by xn+1 = (1− cn)Sxn + cnT xn, n ≥ 0. We prove necessary and sufficient conditions fo...
Suppose that C is a nonempty closed convex subset of a real uniformly convex Banach space X . Let T : C→ C be an asymptotically quasi-nonexpansive mapping. In this paper, we introduce the three-step iterative scheme for such map with error members. Moreover, we prove that if T is uniformly L-Lipschitzian and completely continuous, then the iterative scheme converges strongly to some fixed point...
In this paper, we study the strong convergence of the Halpern type algorithms for a strongly quasi-nonexpansive sequence of operators. These results extend the results of Saejung [11]. Some applications in infinite family of firmly quasi-nonexpansive mappings, multiparameter proximal point algorithm, constraint minimization and subgradient projection are presented.
and Applied Analysis 3 4 if E is a reflexive, strictly convex, and smooth Banach space, then for all x, y ∈ E, φ ( x, y ) 0 iff x y. 1.7 For more details see 2, 3 . Let C be a closed convex subset of E, and let T be a mapping from C into itself. We denote by F T the set of fixed point of T . A point p in C is said to be an asymptotic fixed point of T 8 if C contains a sequence {xn}which converg...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید