نتایج جستجو برای: quantum atomic model
تعداد نتایج: 2416918 فیلتر نتایج به سال:
Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achie...
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of BoseEinstein condensates, which have been successfully created using ultracold ...
We present a quantum multimodal treatment describing electromagnetically induced transparency EIT as a mechanism for storing continuous-variable quantum information in light fields. Taking into account the atomic noise and decoherences of realistic experiments, we numerically model the propagation, storage, and readout of signals contained in the sideband amplitude and phase quadratures of a li...
We explore experimentally quantum nondemolition measurements of atomic spin in a hot potassium vapor in the presence of spin-exchange relaxation. We demonstrate a new technique for backaction evasion by stroboscopic modulation of the probe light. With this technique we study spin noise as a function of polarization for atoms with spin greater than 1/2 and obtain good agreement with a simple the...
This paper examines the parameter regimes in which coupled atomic and molecular Bose-Einstein condensates do not obey the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular condensates are derived using the functional positive-P representation. These equations describe the full quantum state of the coupled condensates and include the commonly used Gross-Pitae...
The presence of chaos and quantum chaos is shown in two different nuclear systems. We analyze the chaotic behaviour of the classical SU(2) Yang–Mills– Higgs system, and then we study quantum chaos in the nuclear shell model calculating the spectral statistics of A = 46–50 atomic nuclei.
In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which is integer and constant and k is wave vector). The longitudinal ...
Scalable quantum-information processing requires the capability of storing quantum states1,2. In particular, a longlived storable and retrievable quantum memory for single excitations is of key importance to long-distance quantum communication with atomic ensembles and linear optics3–7. Although atomic memories for classical light8 and continuous variables9 have been demonstrated with milliseco...
After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and s...
We propose a model, based on a quantum stochastic differential equation QSDE , to describe the scattering of polarized laser light by an atomic gas. The gauge terms in the QSDE account for the direct scattering of the laser light into different field channels. Once the model has been set, we can rigorously derive quantum filtering equations for balanced polarimetry and homodyne detection experi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید