نتایج جستجو برای: prime module
تعداد نتایج: 108563 فیلتر نتایج به سال:
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
Primeness on modules can be defined by prime elements in a suitable partially ordered groupoid. Using a product on the lattice of submodules L(M) of a module M defined in [3] we revise the concept of prime modules in this sense. Those modules M for which L(M) has no nilpotent elements have been studied by Jirasko and they coincide with Zelmanowitz’ “weakly compressible” modules. In particular w...
the generalized principal ideal theorem is one of the cornerstones of dimension theory for noetherian rings. for an r-module m, we identify certain submodules of m that play a role analogous to that of prime ideals in the ring r. using this definition, we extend the generalized principal ideal theorem to modules.
Let L be a complete lattice. We introduce and characterize the prime L-submodules of a unitary module over a commutative ring with identity. Finally, we investigate the Zariski topology on the prime L-Spectrum of a unitary module, consisting of the collection of all prime L-submodules, and prove that for L-top modules the Zariski topology on L-Spec(M) exists. © 2007 Elsevier B.V. All rights res...
Let R be a commutative ring with identity and M an R–module. If M is either locally cyclic projective or faithful multiplication then M is locally either zero or isomorphic to R. We investigate locally cyclic projective modules and the properties they have in common with faithful multiplication modules. Our main tool is the trace ideal. We see that the module structure of a locally cyclic proje...
Let $R$ be a commutative ring with identity and $M$ be an$R$-module. Let $FSpec(M)$ denotes the collection of all prime fuzzysubmodules of $M$. In this regards some basic properties of Zariskitopology on $FSpec(M)$ are investigated. In particular, we provesome equivalent conditions for irreducible subsets of thistopological space and it is shown under certain conditions$FSpec(M)$ is a $T_0-$spa...
For every prime integer p, M. Hochster conjectured the existence of certain p-torsion elements in a local cohomology module over a regular ring of mixed characteristic. We show that Hochster’s conjecture is false. We next construct an example where a local cohomology module over a hypersurface has p-torsion elements for every prime integer p, and consequently has infinitely many associated prim...
a module m is called epi-retractable if every submodule of m is a homomorphic image of m. dually, a module m is called co-epi-retractable if it contains a copy of each of its factor modules. in special case, a ring r is called co-pli (resp. co-pri) if rr (resp. rr) is co-epi-retractable. it is proved that if r is a left principal right duo ring, then every left ideal of r is an epi-retractable ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید