نتایج جستجو برای: power convertion efficiency pce
تعداد نتایج: 834997 فیلتر نتایج به سال:
It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm(-2)) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a...
We present a furan-flanked DPP copolymer, poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo [3,4-c]pyrrole-1,4-dione-altthienylenevinylene} (PDVF-8), and highlight the improvement in the power conversion efficiency (PCE) of polymer solar cells (PSCs) based on the PDVF-8 as an electron donor via solvent additive and methanol treatment. When 3 vol% 1,8-diiodooctane (DIO) or 1-chloronaphthalene...
Vanadium suboxide (VOx) layers deposited by an electro-spray (e-spray) printing method were applied to the fabrication of high efficiency patterned polymer solar cell (PSC) modules. By tailoring surface tension and the atomization condition of the e-sprayed sol precursor, e-sprayed VOx layers on top of both hydrophilic and hydrophobic surfaces were successfully obtained, which enabled alternati...
We demonstrate single layer graphene/n-Si Schottky junction solar cells that under AM1.5 illumination exhibit a power conversion efficiency (PCE) of 8.6%. This performance, achieved by doping the graphene with bis(trifluoromethanesulfonyl)amide, exceeds the native (undoped) device performance by a factor of 4.5 and is the highest PCE reported for graphene-based solar cells to date. Current-volt...
Six poly(phenylene-alt-dithienobenzothiadiazole)-based polymers have been synthesized for application in polymer-fullerene solar cells. Hydrogen, fluorine, or nitrile substitution on benzo-thiadiazole and alkoxy or ester substitution on the phenylene moiety are investigated to reduce the energy loss per converted photon. Power conversion efficiencies (PCEs) up to 6.6% have been obtained. The be...
Two new triphenylamine-based hole-transporting materials (HTMs) containing butadiene derivatives are employed in CH3NH3PbI3 perovskite solar cells. Up to 11.63% of power conversion efficiency (PCE) has been achieved. Advantages such as easy synthesis, low cost and relatively good cell performance exhibit a possibility for commercial applications in the future.
A new copolymer of dithienosilole (DTS) and dithienyl-s-tetrazine (TTz), PDTSTTz, has been designed and synthesized. This solution processable polymer shows a low band gap, strong absorption and good thermal stability. Solar cells from the blend of this polymer with PC(71)BM showed power conversion efficiency (PCE) up to 4.2%.
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary ble...
The power conversion efficiency (PCE) of single-wall carbon nanotube (SCNT)/n-type crystalline silicon heterojunction photovoltaic devices is significantly improved by Au doping. It is found that the overall PCE was significantly increased to threefold. The efficiency enhancement of photovoltaic devices is mainly the improved electrical conductivity of SCNT by increasing the carrier concentrati...
Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moistu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید