نتایج جستجو برای: pareto front
تعداد نتایج: 78397 فیلتر نتایج به سال:
In this paper, a new strategy of visualizing Pareto front points is proposed when solving multi-objective optimization problems. A problem of graphical representation of the Pareto front points arises when the number of objectives is larger than 2 or 3, because, in this case, the Pareto front points are multidimensional. We face the problem of multidimensional data visualization. The visualizat...
The quality of solution sets generated by decomposition-based evolutionary multiobjective optimisation (EMO) algorithms depends heavily on the consistency between a given problem’s Pareto front shape and the specified weights’ distribution. A set of weights distributed uniformly in a simplex often lead to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may f...
Often the Pareto front of a multi-objective optimization problem grows exponentially with the problem size. In this case, it is not possible to compute the whole Pareto front efficiently and one is interested in good approximations. We consider how evolutionary algorithms can achieve such approximations by using different diversity mechanisms. We discuss some well-known approaches such as the d...
The massive scale and variability of microarray gene data creates new and challenging problems of signal extraction, gene clustering, and data mining, especially for temporal gene profiles. Many data mining methods for finding interesting gene expression patterns are based on thresholding single discriminants, e.g. the ratio of between-class to within-class variation or correlation to a templat...
Pareto local search (PLS) is an extension of iterative improvement methods for multi-objective combinatorial optimization problems and an important part of several state-of-the-art multi-objective optimizers. PLS stops when all neighbors of the solutions in its solution archive are dominated. If terminated before completion, it may produce a poor approximation to the Pareto front. This paper pr...
The representation of data quality within established high-dimensional data visualization techniques such as scatterplots and parallel coordinates is still an open problem. This work offers a scale-invariant measure based on Pareto optimality that is able to indicate the quality of data points with respect to the Pareto front. In cases where datasets contain noise or parameters that cannot easi...
The paper presents results of computational experiments in which the impact of design representations on the performance of an evolutionary multiobjective structural design processes was investigated. Specifically, two classes of design representations (i.e., direct representations and generative representations) were used to minimize the total weight and the maximum horizontal displacement of ...
In this paper,we present a newpopulation-basedMonte Carlomethod, so-calledMOMCMC (Multi-Objective Markov Chain Monte Carlo), for sampling in the presence of multiple objective functions in real parameter space. The MOMCMC method is designed to address the ‘‘multi-objective sampling’’ problem, which is not only of interest in exploring diversified solutions at the Pareto optimal front in the fun...
An approach to constructing a Pareto front approximation to computationally expensive multiobjective optimization problems is developed. The approximation is constructed as a sub-complex of a Delaunay triangulation of a finite set of Pareto optimal outcomes to the problem. The approach is based on the concept of inherent nondominance. Rules for checking the inherent nondominance of complexes ar...
This paper reviews some state-of-the-art hybrid multiobjective evolutionary algorithms (MOEAs) dealing with multiobjective optimization problem (MOP). The mathematical formulation of a MOP and some basic definition for tackling MOPs, including Pareto optimality, Pareto optimal set (PS), Pareto front (PF) are provided in Section 1. Section 2 presents a brief introduction to hybrid MOEAs.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید