نتایج جستجو برای: p supersoluble group

تعداد نتایج: 1984072  

A subgroup $H$ is said to be $nc$-supplemented in a group $G$ if there exists a subgroup $Kleq G$ such that $HKlhd G$ and $Hcap K$ is contained in $H_{G}$, the core of $H$ in $G$. We characterize the supersolubility of finite groups $G$ with that every maximal subgroup of the Sylow subgroups is $nc$-supplemented in $G$.

Journal: :Proceedings of the American Mathematical Society 2002

Journal: :Revista Matemática Iberoamericana 2004

Journal: :Archiv der Mathematik 2021

Abstract We consider groups of the form $${G} = {AB}$$ G = AB with two locally cyclic subgroups A and B . The structure these is determined in cases when are both periodic or one them other not. Together a previous study case where torsion-free, this gi...

Journal: :international journal of group theory 0
anitha thillaisundaram university of cambridge, uk

a $p$-group $g$ is $p$-central if $g^{p}le z(g)$‎, ‎and $g$ is‎ ‎$p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin‎ ‎g$‎. ‎we prove that for $g$ a finite $p^{2}$-abelian $p$-central‎ ‎$p$-group‎, ‎excluding certain cases‎, ‎the order of $g$ divides the‎ ‎order of $text{aut}(g)$‎.

Journal: :international journal of group theory 2012
anitha thillaisundaram

a $p$-group $g$ is $p$-central if $g^{p}le z(g)$‎, ‎and $g$ is‎ ‎$p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin‎ ‎g$‎. ‎we prove that for $g$ a finite $p^{2}$-abelian $p$-central ‎$p$-group‎, ‎excluding certain cases‎, ‎the order of $g$ divides the ‎order of $text{aut}(g)$‎.

Journal: :journal of algebra and related topics 2016
m. polkouei m. hashemi

here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. also we find integers $n$ for which, these groups are $n$-central.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید