نتایج جستجو برای: p supersoluble group
تعداد نتایج: 1984072 فیلتر نتایج به سال:
A subgroup $H$ is said to be $nc$-supplemented in a group $G$ if there exists a subgroup $Kleq G$ such that $HKlhd G$ and $Hcap K$ is contained in $H_{G}$, the core of $H$ in $G$. We characterize the supersolubility of finite groups $G$ with that every maximal subgroup of the Sylow subgroups is $nc$-supplemented in $G$.
Abstract We consider groups of the form $${G} = {AB}$$ G = AB with two locally cyclic subgroups A and B . The structure these is determined in cases when are both periodic or one them other not. Together a previous study case where torsion-free, this gi...
a $p$-group $g$ is $p$-central if $g^{p}le z(g)$, and $g$ is $p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin g$. we prove that for $g$ a finite $p^{2}$-abelian $p$-central $p$-group, excluding certain cases, the order of $g$ divides the order of $text{aut}(g)$.
a $p$-group $g$ is $p$-central if $g^{p}le z(g)$, and $g$ is $p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin g$. we prove that for $g$ a finite $p^{2}$-abelian $p$-central $p$-group, excluding certain cases, the order of $g$ divides the order of $text{aut}(g)$.
here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. also we find integers $n$ for which, these groups are $n$-central.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید