نتایج جستجو برای: nonconvex problem
تعداد نتایج: 882470 فیلتر نتایج به سال:
Time-stepping methods using impulse-velocity approaches are guaranteed to have a solution for any friction coefficient, but they may have nonconvex solution sets. We present an example of a configuration with a nonconvex solution set for any nonzero value of the friction coefficient. We construct an iterative algorithm that solves convex subproblems and that is guaranteed, for sufficiently smal...
In this paper, we consider a wide class of constrained nonconvex regularized minimization problems, where the constraints are linearly constraints. It was reported in the literature that nonconvex regularization usually yields a solution with more desirable sparse structural properties beyond convex ones. However, it is not easy to obtain the proximal mapping associated with nonconvex regulariz...
In this paper, we focuses on stability, asymptotical stability and finite-time stability for a class of differential inclusions governed by a nonconvex superpotential. This problem is known by "evolution hemivariational inequalities". After proposing an existence result of solutions, we give the stability results in terms of smooth Lyapunov functions subjected to some conditions described in te...
We propose a decomposition algorithm for a special class of nonconvex mixed integer nonlinear programming problems which have an assignment constraint. If the assignment decisions are decoupled from the remaining constraints of the optimization problem, we propose to use a column enumeration approach. The master problem is a partitioning problem whose objective function coefficients are compute...
This paper presents a canonical duality theory for solving nonconvex polynomial programming problems subjected to box constraints. It is proved that under certain conditions, the constrained nonconvex problems can be converted to the so-called canonical (perfect) dual problems, which can be solved by deterministic methods. Both global and local extrema of the primal problems can be identified b...
We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonconvex part is smooth and the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tack...
We consider the problem of minimizing the sum of a smooth function h with a bounded Hessian, and a nonsmooth function. We assume that the latter function is a composition of a proper closed function P and a surjective linear map M, with the proximal mappings of τP , τ > 0, simple to compute. This problem is nonconvex in general and encompasses many important applications in engineering and mach...
In this paper, we propose a new decomposition approach named the proximal primal dual algorithm (Prox-PDA) for smooth nonconvex linearly constrained optimization problems. The proposed approach is primal-dual based, where the primal step minimizes certain approximation of the augmented Lagrangian of the problem, and the dual step performs an approximate dual ascent. The approximation used in th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید