نتایج جستجو برای: non convex programming
تعداد نتایج: 1645741 فیلتر نتایج به سال:
An extended version of Kelley’s cutting plane method is introduced in the present paper. The extended method can be applied for the solution of convex MINLP (mixed-integer non-linear programming) problems, while Kelley’s cutting plane method was originally introduced for the solution of convex NLP (non-linear programming) problems only. The method is suitable for solving large convex MINLP prob...
We study a generic minimization problem with separable non-convex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed-integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory.
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
In the conic formulation of a convex optimization problem the constraints are expressed as linear inequalities with respect to a possibly non-polyhedral convex cone. This makes it possible to formulate elegant extensions of interior-point methods for linear programming to general nonlinear convex optimization. Recent research on cone programming algorithms has particularly focused on three conv...
convexity theory and duality theory are important issues in math- ematical programming. within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. finally,...
This survey contains recent developments for computing verified results of convex constrained optimization problems, with emphasis on applications. Especially, we consider the computation of verified error bounds for non-smooth convex conic optimization in the framework of functional analysis, for linear programming, and for semidefinite programming. A discussion of important problem transforma...
Abstract Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown function PDE is be determined from partial knowledge of its solutions. This usually a highly non-linear ill-posed problem, for which unique reconstructability results, stability estimates global convergence numerical methods are very hard achieve....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید