Let C be a class of groups, closed under taking subgroups and quotients. We prove that if all metabelian groups of C are torsion-by-nilpotent, then all soluble groups of C are torsion-by-nilpotent. From that, we deduce the following consequence, similar to a well-known result of P. Hall: if H is a normal subgroup of a group G such that H and G/H ′ are (locally finite)-by-nilpotent, then G is (l...