نتایج جستجو برای: neuro fuzzy models

تعداد نتایج: 1002602  

1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas.  Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

2003
Pasi Lehtimäki Kimmo Raivio Olli Simula

The growth in amount of data available today has encouraged the development of effective data analysis methods to support human decision-making. Neuro-fuzzy computation is a soft computing hybridisation combining the learning capabilities of the neural networks with the linguistic representation of data provided by the fuzzy models. In this paper, a framework to build temporally local neuro-fuz...

2007
Jelena Godjevac

The goal of this work is to compare fuzzy, neural network and neuro-fuzzy approaches to the control of mobile robots. The rst part of this paper is devoted to the formal framework of fuzzy controllers. Results of an example of their use for a mobile robot are discussed. As an experimental platform, the Khepera mobile robot is used. The same example is studied using artiicial neural networks. Fo...

2006
Thando Tettey Tshilidzi Marwala

Much has been written about the lack of transparency of computational intelligence models. This paper investigates the level of transparency of the Takagi-Sugeno neuro-fuzzy model and the Neural Network model by applying them to conflict management, an application which is concerned with causal interpretations of results. The neural network model is trained using the Bayesian framework. It is f...

Journal: :CoRR 2010
Wei Lin Du Danny Ho Luiz Fernando Capretz

Accurate software development effort estimation is a critical part of software projects. Effective development of software is based on accurate effort estimation. Although many techniques and algorithmic models have been developed and implemented by practitioners, accurate software development effort prediction is still a challenging endeavor in the field of software engineering, especially in ...

Journal: :Neurocomputing 2003
Bunchingiv Bazartseren Gerald Hildebrandt K.-P. Holz

A comparative study on a short-term water level prediction using arti/cial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for...

2012
Witold BARTKIEWICZ

In the paper the problem of estimation of the prediction intervals (error bars) for the family neuro-fuzzy Short-Term Load Forecasting (STLF) models is discussed. We investigate two neuro-fuzzy networks: Fuzzy Basis Function (FBF) Networks, and linear neuro-fuzzy model with Tagagi-Sugeno reasoning. The paper contains comparison of selected most important methods for error bars calculation (anal...

Journal: :journal of ai and data mining 2015
m. vahedi m. hadad zarif a. akbarzadeh kalat

this paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. the uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. the contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

Journal: :Marine pollution bulletin 2011
Juan Moreno Navas Trevor C Telfer Lindsay G Ross

Combining GIS with neuro-fuzzy modeling has the advantage that expert scientific knowledge in coastal aquaculture activities can be incorporated into a geospatial model to classify areas particularly vulnerable to pollutants. Data on the physical environment and its suitability for aquaculture in an Irish fjard, which is host to a number of different aquaculture activities, were derived from a ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید