نتایج جستجو برای: neural network modeling

تعداد نتایج: 1179043  

In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as  amount  of  flow  intensity  ratio,  temperature,  residence  time,  and  pH  are  used  as  input  variables  of  the network,  whereas  the  extraction  yield  is  considere...

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

Journal: Gas Processing 2013

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

Journal: :مدلسازی در مهندسی 0
نویدی نویدی

in this paper, a novel hybrid model based on neural network and game theory is proposed to support the analyzers in oil market. in this model, first the neural network is utilized to learn the oil prices associated with opec production level and usa imports level. then the learned neural network is applied by a game model. finally the nash equilibrium points of the game present the optimum deci...

Journal: :ecopersia 2015
hussein akbari mehdi vafakhah

there is different methods for simulating river flow. some of thesemethods such as the process based hydrological models need multiple input data and high expertise about the hydrologic process. but some of the methods such as the regression based and artificial inteligens modelsare applicable even in data scarce conditions. this capability can improve efficiency of the hydrologic modeling in u...

Ahmad Yaghobnezhad, Khalili Eraghi Khalili Eraghi Mohammad Azim Khodayari

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

Journal: :Asian Journal of Research in Computer Science 2018

Journal: :desert 2011
m.t. dastorani h. afkhami

in recent decades artificial neural networks (anns) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. this paper presents the application of artificial neural networks to predict drought in yazd meteorological station. in this research, different archite...

This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید