نتایج جستجو برای: nanog
تعداد نتایج: 2396 فیلتر نتایج به سال:
The Wnt/β-catenin pathway and Nanog are key regulators of embryonic stem cell (ESC) pluripotency and the reprogramming of somatic cells. Here, we demonstrate that the repression of Dkk1 by Nanog, which leads indirectly to β-catenin activation, is essential for reprogramming after fusion of ESCs overexpressing Nanog. In addition, β-catenin is necessary in Nanog-dependent conversion of preinduced...
Self-renewal and pluripotency are two major characteristics of embryonic stem cells (ESCs) that allow ESCs to maintain stem cell population, and differentiate into multiple types of adult tissues. Nanog is the key transcription factor that controls both self-renewal and pluripotency of ESCs. Similarly, cancer stem cells (CSCs) are capable of preserving population and initiating new tumor develo...
Nanog, Sox2, and Oct4 are transcription factors all essential to maintaining the pluripotent embryonic stem cell phenotype. Through a cooperative interaction, Sox2 and Oct4 have previously been described to drive pluripotent-specific expression of a number of genes. We now extend the list of Sox2-Oct4 target genes to include Nanog. Within the Nanog proximal promoter, we identify a composite sox...
Supplemental Figures • Fig. S1 (related to Fig. 1). Pathway analysis of proteomics of different liver disease models and validation studies of NANOG target genes identified by NANOG ChIP-seq. • Fig. S2 (related to Fig. 2). Validation of reconstituted bone-marrow-derived cells and Tlr4and Nanog-dependency of mouse TICs isolated from liver tumor model. • Fig. S3 (related to Fig. 3). TLR4 stimulat...
A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To...
Embryonic stem (ES) cell pluripotency is regulated by a combination of extrinsic and intrinsic factors. Previously we have demonstrated that phosphoinositide 3-kinase (PI3K)-dependent signaling is required for efficient self-renewal of murine ES cells. In the study presented here, we have investigated the downstream molecular mechanisms that contribute to the ability of PI3Ks to regulate plurip...
Osteosarcoma is the most common type of bone cancer, and the second leading cause of cancer-related death in children and young adults. Osteosarcoma stem cells are essential for osteosarcoma initiation, metastasis, chemoresistance and recurrence. In the present study, we report that: 1) higher TSSC3 expression indicates a better prognosis for osteosarcoma patients, and; 2) overexpression of TSS...
The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in ...
The transcription factor Nanog plays a critical role in the self-renewal of embryonic stem cells as well as in neural stem cells (NSCs). microRNAs (miRNAs) are also involved in stemness regulation. However, the miRNA network downstream of Nanog is still poorly understood. High-throughput screening of miRNA expression profiles in response to modulated levels of Nanog in postnatal NSCs identifies...
Epithelial-mesenchymal transition (EMT), a critical process of cancer invasion and metastasis, is associated with stemness property of cancer cells. Though Oct4 and Nanog are homebox transcription factors essential to the self-renewal of stem cells and are expressed in several cancers, the role of Oct4/Nanog signaling in tumorigenesis is still elusive. Here microarray and quantitative real-time...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید