نتایج جستجو برای: n doped tio2 nanoparticles
تعداد نتایج: 1135236 فیلتر نتایج به سال:
In this research, N-doped TiO2 (N/TiO2) nanoparticles have been synthesized by a sol-gel method. N/TiO2 nanoparticle has been coated with Ag metal by photochemical method. Triethylamine, N(CH3CH2)3, have been used as precursors of Nitrogen, titanium tetraiso-propoxide (TTIP), Ti[OCH(CH3)2]4, used as precursors of titanium and Ag(NO3)2 used as precursors of Silver in synthesis of these nanoparti...
Here we report a novel method for modifying commercially available TiO2 nanoparticles by a microwave-induced plasma technique. After the plasma treatment TiO2 nanoparticles showed enhanced visible absorption due to the doped W atoms, and the photocatalytic methylene blue degradation above 440 nm was successfully improved.
The aim of this research was to prepare rare metal (Er, Yb)-modified TiO2 nanoparticles by a sol-gel method. The obtained nanoparticles were characterized by BET measurements, UV-Vis spectra and the Laser-induced fluorescence (LIF) method. Visible light photocatalytic activity of the sample was studied by photodegradation of phenol while considering the influence of the dopant concentration. Th...
Titanium dioxide nanoparticles (TiO2) are known as a widely used photocatalyst. In order to improve the performance of these nanoparticles, the recombination of the electron-cavity pair must be reduced and the absorption rate of the visible region should be expanded. One way to increase the performance of these nanoparticles is using cerium doped TiO2. In the present study, pure and doped titan...
Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by vi...
The metallorganic chemical vapor deposition method was successfully used to synthesize pure TiO2 and Nd3 -, Pd2 -, Pt4 -, and Fe3 -doped TiO2 nanoparticles. Polycrystalline TiO2 structure was verified with x-ray diffraction, which showed typical characteristic anatase reflections without any separate dopant-related peaks. Transmission electron microscopy observations confirmed the existence of ...
Silver doped TiO2 nanoparticles have been prepared by liquid impregnation (LI) and photodeposition (PD) methods and characterized by surface analytical methods such as scanning electron micrographs (SEM) and X-ray diffraction (XRD). The photocatalytic activity of silver doped TiO2 was tested by photocatalytic degradation of C.I. Acid Red 88 (AR88) as a model compound from monoazo textile dyes. ...
Amorphous titanium dioxide (TiO2) and gold (Au) doped TiO2-based surface acoustic wave (SAW) sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64◦ YX LiNbO3 SAW transducers in a helium atm...
In the present study, the insulating titanium dioxide (TiO2) nanoparticles were dispersed in two different concentrations of 0.5 wt % and 1.0 wt % in pure ferroelectric liquid crystal (FLC) mixture, W206E. The effects of different concentrations of dopant TiO2 in W206E for electro-optical and dielectric properties have been studied. The optical microscopy measurements clearly show the isotropic...
In this paper, N-doped TiO2 (N-TiO2) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO2 with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, whi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید