نتایج جستجو برای: module dual banach algebra
تعداد نتایج: 298653 فیلتر نتایج به سال:
Let A be a Banach algebra and M be a Banach left A-module. A linear map δ : M → M is called a generalized derivation if there exists a derivation d : A → A such that δ(ax) = aδ(x) + d(a)x (a ∈ A,x ∈ M). In this paper, we associate a triangular Banach algebra T to Banach A-module M and investigate the relation between generalized derivations on M and derivations on T . In particular, we prove th...
We first study some properties of $A$-module homomorphisms $theta:Xrightarrow Y$, where $X$ and $Y$ are Fréchet $A$-modules and $A$ is a unital Fréchet algebra. Then we show that if there exists a continued bisection of the identity for $A$, then $theta$ is automatically continuous under certain condition on $X$. In particular, every homomorphism from $A$ into certain Fr...
in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...
We define a Banach algebra A to be dual if A = (A∗) ∗ for a closed submodule A∗ of A∗. The class of dual Banach algebras includes all W ∗-algebras, but also all algebras M(G) for locally compact groups G, all algebras L(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception...
Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.
The theory of M-ideals and multiplier mappings of Banach spaces naturally generalizes to left (or right) M-ideals and multiplier mappings of operator spaces. These subspaces and mappings are intrinsically characterized in terms of the matrix norms. In turn this is used to prove that the algebra of left adjointable mappings of a dual operator space X is a von Neumann algebra. If in addition X is...
The theory of M-ideals and multiplier mappings of Banach spaces naturally generalizes to left (or right) M-ideals and multiplier mappings of operator spaces. These subspaces and mappings are intrinsically characterized in terms of the matrix norms. In turn this is used to prove that the algebra of left adjointable mappings of a dual operator space X is a von Neumann algebra. If in addition X is...
In a recent paper, S.-E. Takahasi defined the notion of a BSE Banach module over a commutative Banach algebra A with bounded approximate identity. We show that the multiplier space &f(X) of X can be represented as a space of sections in a bundle of Banach spaces, and we use bundle techniques to obtain shorter proofs of various of Takahasi’s results on P-algebra modules and to answer several que...
In this paper we study the module contractibility ofBanach algebras and characterize them in terms the conceptssplitting and admissibility of short exact sequences. Also weinvestigate module contractibility of Banach algebras with theconcept of the module diagonal.
Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید