نتایج جستجو برای: mitochondria reactive oxygen species
تعداد نتایج: 832736 فیلتر نتایج به سال:
Mitochondria plays a major role in maintaining homeostasis of heart cells. Mitochondria produce ATP and is the main intracellular source of reactive oxygen species (ROS) which can cause oxidative damage. Free oxygen radicals and oxidative damage are associated with cardiovascular pathology. Antioxidant defense can play an essential role in preventing oxidative damage by controlling free oxygen ...
Recent reports emphasize the importance of mitochondria in white adipose tissue biology. In addition to their crucial role in energy homeostasis, mitochondria are the main site of reactive oxygen species generation. When moderately produced, they function as physiological signaling molecules. Thus, mitochondrial reactive oxygen species trigger hypoxia-dependent gene expression. Therefore the pr...
Mitochondria are one of the most important organelles for eukaryotes, including humans, to produce energy. In energy-producing process, mitochondria constantly generate reactive oxygen species as a by-product electrons leaking out from electron transport chain react with oxygen. The active oxygen, in turn, plays pivotal roles mediating several signalings, those that implicated development some ...
Mitochondria is where the bulk of the cell's ATP is produced. Mutations occur to genes coding for members of the complexes involved in energy production. Some are a result of damages to nuclear coded genes and others to mitochondrial coded genes. This review describes approaches to bring small molecules, proteins and RNA/DNA into mitochondria. The purpose is to repair damaged genes as well as t...
Reactive oxygen species (ROS) cause molecular damage that accumulates with age and have been proposed to be one of the primary causes of aging. However, recent work indicates that ROS have beneficial roles in an organism and that the relationship between ROS and aging is complex. We have shown that increasing ROS levels or oxidative damage does not necessarily lead to decreased lifespan. We hav...
The reduction of molecular oxygen to water provides most of the biologically useful energy. However, oxygen reduction is a mixed blessing because incompletely reduced oxygen species such as superoxide or peroxides are quite reactive and can, when out of control, cause damage. In mitochondria, where most of the oxygen utilized by eukaryotic cells is reduced, the dichotomy of oxygen shows itself ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید