نتایج جستجو برای: mir398
تعداد نتایج: 64 فیلتر نتایج به سال:
microRNAs (miRNAs) are a class of negative regulators that take part in many processes such as growth and development, stress responses, and metabolism in plants. Recently, miRNAs were shown to function in plant nutrient metabolism. Moreover, several miRNAs were identified in the response to nitrogen (N) deficiency. To investigate the functions of other miRNAs in N deficiency, deep sequencing t...
Although recent studies indicated that miRNAs regulate plant adaptive responses to nutrient deprivation, the functional significance of miRNAs in adaptive responses to nitrogen (N) limitation remains to be explored. To elucidate the molecular biology underlying N sensing/signaling in maize, we constructed four small RNA libraries and one degradome from maize seedlings exposed to N deficiency. W...
The contamination of soil with high levels cadmium (Cd) is increasing concern, as Cd a heavy metal element that seriously limits crop productivity and quality, thus affecting human health. (1) Background: Some miRNAs play key regulatory roles in response to stress, but few have been explored the highly Cd-enriched coefficient oilseed crop, Brassica juncea. (2) Methods: genome-wide identificatio...
Several genes encoding transcription factors (TFs) were indicated to have a key role in the induction of somatic embryogenesis (SE), which is triggered in the somatic cells of plants. In order to further explore the genetic regulatory network that is involved in the embryogenic transition induced in plant somatic cells, micro-RNA (miRNAs) molecules, the products of MIRNA (MIR) genes and the com...
Feasible and efficient tissue culture plays an important role in plant genetic engineering. Wheat (Triticum aestivum L.) immature embryos (IMEs) are preferred for tissue culture to mature embryos (MEs) because IMEs easily generate embryogenic callus, producing large number of plants. The molecular mechanisms of regulation and the biological pathways involved in embryogenic callus formation in w...
MicroRNAs (miRNAs), a type of short (21-23 nucleotides), non-coding RNA molecule, mediate repressive gene regulation through RNA silencing at the post-transcriptional level, and play an important role in defense and response to abiotic and biotic stresses. In the present study, Affymetrix® miRNA Array, real-time quantitative PCR (qPCR) for miRNAs and their targets, and miRNA promoter analysis w...
Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome...
MicroRNAs (miRNAs) play essential roles in plant development, but the roles in the in vitro plant development are unknown. Leaves of ponkan plantlets derived from mature embryos at in vitro culture conditions were used to sequence small RNA fraction via Solexa sequencing, and the miRNAs expression was analyzed. The results showed that there were 3,065,625 unique sequences in ponkan, of which 0....
BACKGROUND Nitrate is the major source of nitrogen available for many crop plants and is often the limiting factor for plant growth and agricultural productivity especially for maize. Many studies have been done identifying the transcriptome changes under low nitrate conditions. However, the microRNAs (miRNAs) varied under nitrate limiting conditions in maize has not been reported. MiRNAs play ...
Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylth...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید