نتایج جستجو برای: methylosinus trichosporium

تعداد نتایج: 226  

Journal: :Bioscience, biotechnology, and biochemistry 2007
Hua Shaofeng Li Shuben Xin Jiayin Niu Jianzhong Xia Chungu Tan Haidong Tang Wei

Methane monooxygenase hydroxylase was purified by chromatography and characterized by electrophoresis and spectroscopy. The molecular mass of hydroxylase was 201.3 KDa as determined by gel filtration, whereas the total molecular mass was 234 KDa as judged by SDS-PAGE. Structure study indicated that the enzyme is a homodimer structure, consisting of three subunits, designated alpha, beta, and ga...

Journal: :Applied and environmental microbiology 2000
J D Morton K F Hayes J D Semrau

Soluble methane monooxygenase (sMMO) activity in Methylosinus trichosporium OB3b was found to be more strongly affected as copper-to-biomass ratios changed in a newly developed medium, M2M, which uses pyrophosphate for metal chelation, than in nitrate mineral salts (NMS), which uses EDTA. When M2M medium was amended with EDTA, sMMO activity was similar to that in NMS medium, indicating that EDT...

Journal: :Applied and environmental microbiology 1994
D Jahng T K Wood

Soluble methane monooxygenase (sMMO) from Methylosinus trichosporium OB3b can degrade many halogenated aliphatic compounds that are found in contaminated soil and groundwater. This enzyme oxidizes the most frequently detected pollutant, trichloroethylene (TCE), at least 50 times faster than other enzymes. However, slow growth of the strain, strong competition between TCE and methane for sMMO, a...

Journal: :Applied and environmental microbiology 1997
N Hamamura C Page T Long L Semprini D J Arp

Chloroform (CF) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas butanovora and Mycobacterium vaccae JOB5 and to that by a known CF degrader, Methylosinus trichosporium OB3b. All three butane-grown bacteria were able to degrade CF at rates comparable to that of M. trichosporium. CF degradation by all four bacteria required O(inf2). Butane i...

Journal: :Bioresource Technology 2021

Given the difficulties valorizing methane (CH4) via catalytic routes, this study explores use of CH4-oxidizing bacteria (“methanotrophs”) for generating electricity directly from CH4. A preconditioned methanotrophic biofilm on 3D nickel foam with reduced graphene oxide (rGO/Ni) was used as anode in two-compartment microbial fuel cells (MFCs). This demonstrates a proof concept turning CH4 into b...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید