نتایج جستجو برای: maximal subgroup
تعداد نتایج: 171211 فیلتر نتایج به سال:
The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...
In this paper, we study the minimality of the boundary of a Coxeter system. We show that for a Coxeter system (W,S) if there exist a maximal spherical subset T of S and an element s0 ∈ S such that m(s0, t) ≥ 3 for each t ∈ T and m(s0, t0) = ∞ for some t0 ∈ T , then every orbit Wα is dense in the boundary ∂Σ(W,S) of the Coxeter system (W,S), hence ∂Σ(W,S) is minimal, where m(s0, t) is the order ...
let $g$ be a $p$-group of order $p^n$ and $phi$=$phi(g)$ be the frattini subgroup of $g$. it is shown that the nilpotency class of $autf(g)$, the group of all automorphisms of $g$ centralizing $g/ fr(g)$, takes the maximum value $n-2$ if and only if $g$ is of maximal class. we also determine the nilpotency class of $autf(g)$ when $g$ is a finite abelian $p$-group.
Exercise 1 (Maximal compact subgroups of G). A lattice in Qp is a finitelygenerated Zp-submodule of Qp that generates Qp as vector space. In particular, it’s free of rank n. Note that G acts transitively on the set of lattices in Qp . (i) Show that K = StabG(Zp ). (ii) Suppose that K ′ is a compact subgroup of G. Show that K ′ stabilises a lattice. (Hint: show that the K ′-orbit of Zp is finite...
let $g$ be a $p$-group of order $p^n$ and $phi$=$phi(g)$ be the frattini subgroup of $g$. it is shown that the nilpotency class of $autf(g)$, the group of all automorphisms of $g$ centralizing $g/ fr(g)$, takes the maximum value $n-2$ if and only if $g$ is of maximal class. we also determine the nilpotency class of $autf(g)$ when $g$ is a finite abelian $p$-group.
Let A" be a topological space. We recall that D, a subset of X is called a C-set if any continuum which meets D and its complement must contain D. Let 5 be a continuum which is a topological semigroup with identity 1, and let H denote the maximal subgroup of 5 containing 1. It is well known that H exists and is compact. The following four conjectures have been raised and shown to be equivalent ...
There are strong analogies between groups definable in o-minimal structures and real Lie groups. Nevertheless, unlike the real case, not every definable group has maximal definably compact subgroups. We study definable groups G which are not definably compact showing that they have a unique maximal normal definable torsion-free subgroup N ; the quotient G/N always has maximal definably compact ...
This paper proves: Let F be a saturated formation containing U . Suppose that G is a group with a normal subgroup H such that G/H ∈ F . (1) If all maximal subgroups of any Sylow subgroup of F ∗(H) are c-supplemented in G, then G ∈ F ; (2) If all minimal subgroups and all cyclic subgroups with order 4 of F ∗(H) are c-supplemented in G, then G ∈ F .
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید