نتایج جستجو برای: max injective module
تعداد نتایج: 115968 فیلتر نتایج به سال:
In this paper, we introduce the notion of $(m,n)$-algebraically compact modules as an analogue of algebraically compact modules and then we show that $(m,n)$-algebraically compactness and $(m,n)$-pure injectivity for modules coincide. Moreover, further characterizations of a $(m,n)$-pure injective module over a commutative ring are given.
An easy consequence of this is that a left Noetherian (respectively left Artinian) ring which is finitely generated over its center is right Noetherian (respectively right Artinian). Theorem 1 follows easily from Theorem 2, which gives a partial converse to the following standard fact: IfR C S are rings, and ifQ is an injective R-module, then Hom~(S, Q) is an injective S-module (this follows, f...
For a given class of R-modules Q, module M is called Q-copure Baer injective if any map from left ideal R into can be extended to M. Depending on the this concept both dualization and generalization pure injectivity. We show that every embedded as submodule module. Certain types rings are characterized using properties modules. example ring Q-coregular only R-module injective.
A module M is called epi-retractable if every submodule of M is a homomorphic image of M. Dually, a module M is called co-epi-retractable if it contains a copy of each of its factor modules. In special case, a ring R is called co-pli (resp. co-pri) if RR (resp. RR) is co-epi-retractable. It is proved that if R is a left principal right duo ring, then every left ideal of R is an epi-retractable ...
It is proven that each indecomposable injective module over a valuation domain R is polyserial if and only if each maximal immediate extension R̂ of R is of finite rank over the completion R̃ of R in the R-topology. In this case, for each indecomposable injective module E, the following invariants are finite and equal: its Malcev rank, its Fleischer rank and its dual Goldie dimension. Similar res...
We show that there is a reflection type bijection between the indecomposable summands of two multiplicity free tilting modules X and Y. This fixes common Y sends projective (resp., injective) exactly one module to non-projective non-injective) other. Moreover, this interchanges possible non-isomorphic complements an almost complete module.
an r-module m is called epi-retractable if every submodule of mr is a homomorphic image of m. it is shown that if r is a right perfect ring, then every projective slightly compressible module mr is epi-retractable. if r is a noetherian ring, then every epi-retractable right r-module has direct sum of uniform submodules. if endomorphism ring of a module mr is von-neumann regular, then m is semi-...
Let R be a right GF -closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorenstein flat dimension of R/I as a right R-module and the Gorenstein injective dimension of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorenstein ring R, the G...
We show that every semi-artinian module which is contained in a direct sum of finitely presented modules in $si[M]$, is weakly co-semisimple if and only if it is regular in $si[M]$. As a consequence, we observe that every semi-artinian ring is regular in the sense of von Neumann if and only if its simple modules are $FP$-injective.
We discuss various properties of a ring over which each simple module is Σ-injective. We shall consider associative rings with identity. Our modules will be unital right modules unless stated otherwise. The class of right V rings was introduced by Villamayor [20]. A ring R is called a right V ring if each simple right Rmodule is injective. It is a well-known unpublished result due to Kaplansky ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید