نتایج جستجو برای: mathcala_px laplacian

تعداد نتایج: 12682  

A. Heydari E. Peyghan N. Boroojerdian

Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...

The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...

2009
G. Buttazzo

We consider overdetermined boundary value problems for the ∞-Laplacian in a domain Ω of Rn and discuss what kind of implications on the geometry of Ω the existence of a solution may have. The classical ∞-Laplacian, the normalized or game-theoretic ∞-Laplacian and the limit of the p-Laplacian as p→∞ are considered and provide different answers. Mathematics Subject Classification (2000). 35R35, 4...

2010
Gholam Hossein Fath-Tabar Ali Reza Ashrafi

Suppose μ1, μ2, ... , μn are Laplacian eigenvalues of a graph G. The Laplacian energy of G is defined as LE(G) = ∑n i=1 |μi − 2m/n|. In this paper, some new bounds for the Laplacian eigenvalues and Laplacian energy of some special types of the subgraphs of Kn are presented. AMS subject classifications: 05C50

2013
GUANGLONG YU SHUGUANG GUO MEILING XU

For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue among all the nonbipartite graphs with given matching number and edge cover number, respectively.

2017
Guanglong Yu Shuguang Guo Meiling Xu GUANGLONG YU SHUGUANG GUO MEILING XU

For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue among all the nonbipartite graphs with given matching number and edge cover number, respectively.

Journal: :Electr. J. Comb. 2009
Yanqing Chen Ligong Wang

The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In this paper, we investigate Laplacian spread of graphs, and prove that there exist exactly five types of tricyclic graphs with maximum Laplacian spread among all tricyclic graphs of fixed order.

Journal: :bulletin of the iranian mathematical society 2011
a. heydari n. boroojerdian e. peyghan

recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. using this machinery, we have defined the concept of symmetric curvature. this concept is natural and is related to the notions divergence and laplacian of vector fields. this concept is also related to the derivations on the algebra of symmetric forms which has been discus...

Journal: :CoRR 2017
Shota Saito Danilo P. Mandic Hideyuki Suzuki

The graph Laplacian plays key roles in information processing of relational data, and has analogies with the Laplacian in differential geometry. In this paper, we generalize the analogy between graph Laplacian and differential geometry to the hypergraph setting, and propose a novel hypergraph pLaplacian. Unlike the existing two-node graph Laplacians, this generalization makes it possible to ana...

Journal: :J. Comb. Optim. 2015
Sheng-Long Hu Liqun Qi

In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a k-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval [0, 2], and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H+-eigenvalues of the Laplacian and all the smallest H+-eigenvalues of its sub-t...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید