Let c be a proper k-coloring of a connected graph G andΠ = (C1, C2, . . . , Ck) be an ordered partition of V (G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple c Π (v) := (d(v, C1), d(v, C2), . . . , d(v, Ck)), where d(v, Ci) = min{d(v, x)|x ∈ Ci}, 1 ≤ i ≤ k. If distinct vertices have distinct color codes, then c...