نتایج جستجو برای: locally convex cones
تعداد نتایج: 143155 فیلتر نتایج به سال:
In this paper, a Krein-Milman type theorem in $T_0$ semitopological cone is proved, in general. In fact, it is shown that in any locally convex $T_0$ semitopological cone, every convex compact saturated subset is the compact saturated convex hull of its extreme points, which improves the results of Larrecq.
We show that closed convex cones, having bounded order intervals (in particular weakly complete proper convex cones) in conuclear spaces, are generated by their extreme rays. An analogue of Choquet's theorem is obtained for these cones, as well as for the conuclear cones deened in this article. Well-capped cones are conuclear. The main tool is Choquet's notion of conical measure, of which we pr...
Some physicists suggest that to more adequately describe the causal structure of space-time, it is necessary to go beyond the usual pseudoRiemannian causality, to a more general Finsler causality. In this general case, the set of all the events which can be influenced by a given event is, locally, a generic convex cone, and not necessarily a pseudoReimannian-style quadratic cone. Since all curr...
In this paper, a local approach to the concept of Hudetz $g$-entropy is presented. The introduced concept is stated in terms of Hudetz $g$-entropy. This representation is based on the concept of $g$-ergodic decomposition which is a result of the Choquet's representation Theorem for compact convex metrizable subsets of locally convex spaces.
There are three related concepts that arise in connection with the angular analysis of a convex cone: antipodality, criticality, and Nash equilibria. These concepts are geometric in nature but they can also be approached from the perspective of optimization theory. A detailed angular analysis of polyhedral convex cones has been carried out in a recent work of ours. This note focus on two import...
Explicit Formula of Koszul-Vinberg Characteristic Functions for a Wide Class of Regular Convex Cones
Abstract: The Koszul–Vinberg characteristic function plays a fundamental role in the theory of convex cones. We give an explicit description of the function and related integral formulas for a new class of convex cones, including homogeneous cones and cones associated with chordal (decomposable) graphs appearing in statistics. Furthermore, we discuss an application to maximum likelihood estimat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید