نتایج جستجو برای: largest eigenvalue
تعداد نتایج: 109243 فیلتر نتایج به سال:
An upper bound is given on the minimum distance between i subsets of the same size of a regular graph in terms of the i-th largest eigenvalue in absolute value. This yields a bound on the diameter in terms of the i-th largest eigenvalue, for any integer i. Our bounds are shown to be asymptotically tight. A recent result by Quenell relating the diameter, the second eigenvalue, and the girth of a...
In this thesis, we studied eigenvalues of directed and undirected graphs and their applications. In the first part, a detailed study of the largest eigenvalue of the normalized Laplace operator ∆ for undirected graphs was presented. In contrast to the smallest nontrivial eigenvalue λ1, the largest eigenvalue λn−1 has not been studied systematically before. However, it is well-known that λ1 can ...
In this paper, we show that the largest signless Laplacian H-eigenvalue of a connected k-uniform hypergraph G, where k ≥ 3, reaches its upper bound 2∆(G), where ∆(G) is the largest degree of G, if and only if G is regular. Thus the largest Laplacian H-eigenvalue of G, reaches the same upper bound, if and only if G is regular and oddbipartite. We show that an s-cycle G, as a k-uniform hypergraph...
Abstract. The largest eigenvalue of a matrix is always larger or equal than its largest diagonal entry. We show that for a large class of random Laplacian matrices, this bound is essentially tight: the largest eigenvalue is, up to lower order terms, often the size of the largest diagonal entry. Besides being a simple tool to obtain precise estimates on the largest eigenvalue of a large class of...
In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a k-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval [0, 2], and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H+-eigenvalues of the Laplacian and all the smallest H+-eigenvalues of its sub-t...
Survey of power, QR, and oepomo's iterative methods for solution of largest eigenvalue of essentially positive matrices. Abstract. Many of the popular methods for the solution of largest eigenvalue of essentially positive ir-reducible matrices are surveyed with the hope of finding an efficient method suitable for electromagnetic engineering, radiation problems, system identification problems, a...
We derive Painlevé–type expressions for the distribution of the m largest eigenvalue in the Gaussian Orthogonal and Symplectic Ensembles in the edge scaling limit. The work of Johnstone and Soshnikov (see [7], [10]) implies the immediate relevance of our formulas for the m largest eigenvalue of the appropriate Wishart distribution.
There is a connection between the expansion of a graph and the eigengap (or spectral gap) of the normalized adjacency matrix (that is, the gap between the first and second largest eigenvalues). Recall that the largest eigenvalue of the normalized adjacency matrix is 1; denote it by λ1 and denote the second largest eigenvalue by λ2. We will see that a large gap (that is, small λ2) implies good e...
The signless Laplacian separator of a graph is defined as the difference between the largest eigenvalue and the second largest eigenvalue of the associated signless Laplacian matrix. In this paper, we determine the maximum signless Laplacian separators of unicyclic, bicyclic and tricyclic graphs with given order.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید