نتایج جستجو برای: hyers ulam rassiasstability

تعداد نتایج: 2078  

2005
John Michael Rassias Matina John Rassias David Eisenbud

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982–2005 we established the Hyers–Ulam stability for the Ulam problem of linear and nonlinear mappings. In 1998 S.-M. Jung and in 2002–2005 the authors of this paper investigated the Hyers–Ulam stability of additive ...

2015
M. Arunkumar A. Vijayakumar

In this paper, the authors established the generalized Ulam Hyers stability of additive functional equation    

Journal: :J. Applied Mathematics 2012
Hassan Azadi Kenary Hamid Rezaei S. Talebzadeh Sung Jin Lee

In 1940 and 1964, Ulam proposed the general problem: “When is it true that by changing a little the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?”. In 1941, Hyers solved this stability problem for linear mappings. According to Gruber 1978 this kind of stability problems are of the particular interest in probability theory and in ...

Journal: :Mathematics 2022

In this paper, we study Hyers–Ulam and generalized Hyers–Ulam–Rassias stability of a system hyperbolic partial differential equations using Gronwall’s lemma Perov’s theorem.

Journal: :Appl. Math. Lett. 2009
S.-M. Jung

In this work, we will prove the Hyers–Ulam stability of linear partial differential equations of first order.

2013
TAKESHI MIURA TAKAHIRO HAYATA

We will consider the Banach space valued differential equation y′(t) = Ay(t) , where A is an n× n complex matrix. We give a necessary and sufficient condition in order that the equation have the Hyers-Ulam stability. As a Corollary, we prove that the Banach space valued linear differential equation with constant coefficients y(n)(t) + an−1y(n−1)(t) + · · ·+ a1y′(t) + a0y(t) = 0 has the Hyers-Ul...

2011
Liguang Wang

The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’s theorem was generalized by Aoki 3 for additive mappings. In 1978, Rassias 4 generalized Hyers theorem by obtaining a unique linear mapping near an approximate additiv...

2014
Abasalt Bodaghi

We obtain the general solution of the generalized quartic functional equation f(x + my) + f(x - my) = 2(7m - 9)(m - 1)f(x) + 2m²(m² - 1)f(y)-(m - 1)² f(2x) + m²{f(x + y) + f(x - y)} for a fixed positive integer m. We prove the Hyers-Ulam stability for this quartic functional equation by the directed method and the fixed point method on real Banach spaces. We also investigate the Hyers-Ulam stab...

2013
S. Murthy

In this paper, the authors investigate the generalized Ulam-Hyers stability of  n dimensional quadratic functional equation

Binayak S. Choudhury, Nabin Chandra Kayal Parbati Saha Tapas Kumar Samanta

Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید