نتایج جستجو برای: homologous recombination repair system

تعداد نتایج: 2445402  

Journal: :Clinical cancer research : an official journal of the American Association for Cancer Research 2014
Felix Dietlein H Christian Reinhardt

Disabling mutations in genome maintenance and DNA repair pathways are frequently observed in cancer. These DNA repair defects represent genetic aberrations that are specific to cancer cells and not present in healthy tissues. It is thought that these molecular defects produce a "mutator phenotype," which allows incipient cancer cells to accumulate additional cancer-promoting mutations. In recen...

2008
Martha Klovstad Uri Abdu Trudi Schüpbach

Heterozygous mutations in the tumor suppressor BRCA2 confer a high risk of breast and other cancers in humans. BRCA2 maintains genome stability in part through the regulation of Rad51-dependent homologous recombination. Much about its precise function in the DNA damage responses is, however, not yet known. We have made null mutations in the Drosophila homolog of BRCA2 and measured the levels of...

Journal: :Nucleic acids research 2002
Yuval Cohen Michele Dardalhon Dietrich Averbeck

We have determined the kinetics of up-regulation of the homologous recombination gene RAD51, one of the genes induced following DNA damage in isogenic haploid DNA repair-deficient mutants of Saccharomyces cerevisiae, using treatment with the DNA crosslinking agent 8-methoxypsoralen. We show that RAD51 is up-regulated concomitantly, although independently, with a shift from the G1 cell cycle pha...

2004
Maria Spies

In all cells, genetic recombination is used to repair DNA breaks and, as a result, genetic information is exchanged between homologous DNA molecules. Discontinuities in DNA strands, specifically double-strand DNA breaks and single-strand DNA gaps, attract the enzymes responsible for the initiation of homologous recombination. In wild-type Escherichia coli, two distinct pathways are responsible ...

2014
Shinichi Machida Motoki Takaku Masae Ikura Jiying Sun Hidekazu Suzuki Wataru Kobayashi Aiko Kinomura Akihisa Osakabe Hiroaki Tachiwana Yasunori Horikoshi Atsuhiko Fukuto Ryo Matsuda Kiyoe Ura Satoshi Tashiro Tsuyoshi Ikura Hitoshi Kurumizaka

Homologous recombination plays essential roles in mitotic DNA double strand break (DSB) repair and meiotic genetic recombination. In eukaryotes, RAD51 promotes the central homologous-pairing step during homologous recombination, but is not sufficient to overcome the reaction barrier imposed by nucleosomes. RAD54, a member of the ATP-dependent nucleosome remodeling factor family, is required to ...

Journal: :Genetics 1999
H Puchta

Homologous recombination between ectopic sites is rare in higher eukaryotes. To test whether double-strand breaks (DSBs) can induce ectopic recombination, transgenic tobacco plants harboring two unlinked, nonfunctional homologous parts of a kanamycin resistance gene were produced. To induce homologous recombination between the recipient locus (containing an I-SceI site within homologous sequenc...

2014
Felix Dietlein Christian Reinhardt

Disablingmutations in genomemaintenance andDNA repair pathways are frequently observed in cancer. These DNA repair defects represent genetic aberrations that are specific to cancer cells and not present in healthy tissues. It is thought that these molecular defects produce a "mutator phenotype," which allows incipient cancer cells to accumulate additional cancer-promoting mutations. In recent y...

Journal: :Genetics 2007
Sarah J Radford Mathilde M Sabourin Susan McMahan Jeff Sekelsky

Crossovers (COs) generated through meiotic recombination are important for the correct segregation of homologous chromosomes during meiosis. Several models describing the molecular mechanism of meiotic recombination have been proposed. These models differ in the arrangement of heteroduplex DNA (hDNA) in recombination intermediates. Heterologies in hDNA are usually repaired prior to the recovery...

Journal: :Current Biology 2001
Deborah E Barnes

In spite of its essential role as the carrier of genetic information, DNA is not an inert structure. The genome is susceptible to potentially mutagenic threats of both endogenous and environmental origin. A dramatic threat to the covalent structure of DNA is posed by breaks in the phosphate backbone affecting one or both strands of the Watson–Crick double helix. Ionizing radiation and certain c...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید