In the recent paper [2], the authors obtained new proofs on the existence and uniqueness of the solution of the Volterra linear equation. Applying their results, in this paper we express the exact and approximate solution of the equation in the field of Mikusi´nski operators, F, which corresponds to an integro–differential equation.
A new class of numerical methods for Volterra integro-differential equations with memory is developed. The methods are based on the combination of general linear methods with compound quadrature rules. Sufficient conditions that guarantee global and asymptotic stability of the solution of the differential equation and its numerical approximation are established. Numerical examples illustrate th...
This paper presents meshfree method for solving systems of linear Volterra integro-differential equations with initial conditions. This approach is based on collocation method using Sinc basis functions. It's well-known that the Sinc approximate solution converges exponentially to the exact solution. Some numerical results are included to show the validity of this method.
Keywords: Volterra integro-differential equations Multistep collocation Superconvergence Stability a b s t r a c t Multistep collocation methods for Volterra integro-differential equations are derived and analyzed. They increase the order of convergence of classical one-step collocation methods, at the same computational cost. The numerical stability analysis is carried out and classes of A 0-s...
The paper presents the foundations of theory linear fractional Volterra integro-differential equations convolution type in Banach spaces. It is established that existence a resolvent operator for such equivalent to well-posedness formulation initial problem them. Within framework this approach, theorem Hille–Yosida proved.
In this paper, the new iterative method with a reliable algorithm is applied to the systems of Volterra integro-differential equations. The method is useful for both linear and nonlinear equations. By using this method, the solutions are obtained in series form. Two linear and one nonlinear system of the equations are given to verify the reliability and efficiency of the method. Beside this, th...
The method of generalized quasilinearization technique when is applied to the nonlinear integrodifferential equations of Volterra type, gives two sequences of linear integro-differential equations with solutions monotonically and quadratically convergent to the solution of nonlinear equation. In this paper we employ step-by-step collocation method to solve the linear equations numerically and t...
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
A general class of convergent methods for the numerical solution of ordinary differential equations is employed to obtain a class of convergent generalized reducible quadrature methods for Volterra integral equations of the second kind and Volterra integro-differential equations.