نتایج جستجو برای: fuzzy inference model

تعداد نتایج: 2230587  

2001
Ajith Abraham

Neuro-fuzzy computing, which provides efficient information processing capability by devising methodologies and algorithms for modeling uncertainty and imprecise information, forms at this juncture, a key component of soft computing. An integrated neuro-fuzzy system is simply a fuzzy inference system trained by a neural networklearning algorithm. The learning mechanism fine-tunes the underlying...

2016
Dr.B.B.M.Krishna Kanth

In this paper we presented an architecture and basic learning process underlying in fuzzy inference system and adaptive neuro fuzzy inference system which is a hybrid network implemented in framework of adaptive network. In real world computing environment, soft computing techniques including neural network, fuzzy logic algorithms have been widely used to derive an actual decision using given i...

ژورنال: علوم آب و خاک 2020

In this study, we used the ARIMA time series model, the fuzzy-neural inference network, multi-layer perceptron artificial neural network, and ARIMA-ANN, ARIMA-ANFIS hybrid models for the modeling and prediction of the daily electrical conductivity parameter of daily teleZang hydrometric station over the statistical period of 49 years. For this purpose, the daily data for the 1996-2004 period we...

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

Journal: :Int. Arab J. Inf. Technol. 2005
Hassan B. Diab Jean J. Saade

This paper presents the use of fuzzy inference to provide a viable modeling and simulation methodology for the estimation of population growth in any country or region. The study is motivated by the classical complex and time-consuming growth modeling and prediction methods. The related design issues are presented and the fuzzy inference model for population growth is derived. The human social ...

The main condition of the differently implicational inferencealgorithm is reconsidered from a contrary direction, which motivatesa new fuzzy inference strategy, called the double fuzzyimplications-based restriction inference algorithm. New restrictioninference principle is proposed, which improves the principle of thefull implication restriction inference algorithm. Furthermore,focusing on the ...

2011
Ajay Shekhar Pandey

This paper proposes a fuzzy inference based neural network for the forecasting of short term loads. The forecasting model is the integration of fuzzy inference engine and the neural network, known as Fuzzy Inference Neural Network (FINN). A FINN initially creates a rule base from existing historical load data. The parameters of the rule base are then tuned through a training process, so that th...

2009
Yuanyuan Chai Limin Jia Zundong Zhang

Hybrid algorithm is the hot issue in Computational Intelligence (CI) study. From in-depth discussion on Simulation Mechanism Based (SMB) classification method and composite patterns, this paper presents the Mamdani model based Adaptive Neural Fuzzy Inference System (M-ANFIS) and weight updating formula in consideration with qualitative representation of inference consequent parts in fuzzy neura...

Journal: :Data Knowl. Eng. 1996
John Hale Sujeet Shenoi

Imprecise inference models the ability to infer sets of values or information chunks. Imprecise database inference is just as important as precise inference. In fact, it is more prevalent than its precise counterpart even in precise databases. Analyzing the extent of imprecise inference is important in knowledge discovery and database security. Imprecise inference analysis can be used to \mine"...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید