نتایج جستجو برای: frank and wolfe method
تعداد نتایج: 17046428 فیلتر نتایج به سال:
In this paper we study the convex problem of optimizing the sum of a smooth function and a compactly supported non-smooth term with a specific separable form. We analyze the block version of the generalized conditional gradient method when the blocks are chosen in a cyclic order. A global sublinear rate of convergence is established for two different stepsize strategies commonly used in this cl...
Estimating the inverse covariance matrix of p variables from n observations is challenging when n p, since the sample covariance matrix is singular and cannot be inverted. A popular solution is to optimize for the `1 penalized estimator; however, this does not incorporate structure domain knowledge and can be expensive to optimize. We consider finding inverse covariance matrices with group stru...
Recovering matrices from compressive and grossly corrupted observations is a fundamental problem in robust statistics, with rich applications in computer vision and machine learning. In theory, under certain conditions, this problem can be solved in polynomial time via a natural convex relaxation, known as Compressive Principal Component Pursuit (CPCP). However, all existing provable algorithms...
In this paper, we propose an inexact Newton-like conditional gradient method for solving constrained systems of nonlinear equations. The local convergence of the new method as well as results on its rate are established by using a general majorant condition. Two applications of such condition are provided: one is for functions whose the derivative satisfies Hölder-like condition and the other i...
The ordered weighted `1 norm (OWL) was recently proposed, with two different motivations: because of its good statistical properties as a sparsity promoting regularizer, and as generalization of the so-called octagonal shrinkage and clustering algorithm for regression (OSCAR). The OSCAR is a convex groupsparsity inducing regularizer, which does not require the prior specification of the group s...
This paper presents a new solution technique for the tra c assignment problem. The approach is based on an iteratively improved nonlinear and separable approximation of the originally nonseparable objective function, and resembles the Frank-Wolfe algorithm in the sense that the subproblem separates with respect to commodities. Since the singlecommodity subproblems are strictly convex, the new a...
In this paper, we propose several improvements on the block-coordinate Frank-Wolfe (BCFW) algorithm from Lacoste-Julien et al. (2013) recently used to optimize the structured support vector machine (SSVM) objective in the context of structured prediction, though it has wider applications. The key intuition behind our improvements is that the estimates of block gaps maintained by BCFW reveal the...
Boosting is a generic learning method for classification and regression. Yet, as the number of base hypotheses becomes larger, boosting can lead to a deterioration of test performance. Overfitting is an important and ubiquitous phenomenon, especially in regression settings. To avoid overfitting, we consider using l1 regularization. We propose a novel Frank-Wolfe type boosting algorithm (FWBoost...
In this paper, we show that the Away-step Stochastic Frank-Wolfe (ASFW) and Pairwise Stochastic Frank-Wolfe (PSFW) algorithms converge linearly in expectation. We also show that if an algorithm convergences linearly in expectation then it converges linearly almost surely. In order to prove these results, we develop a novel proof technique based on concepts of empirical processes and concentrati...
We consider the problem of bandit optimization, inspired by stochastic optimization and online learning problems with bandit feedback. In this problem, the objective is to minimize a global loss function of all the actions, not necessarily a cumulative loss. This framework allows us to study a very general class of problems, with applications in statistics, machine learning, and other fields. T...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید