نتایج جستجو برای: fractional di fferential equation
تعداد نتایج: 535483 فیلتر نتایج به سال:
in this article, an analytical approximate solution of nonlinear fractional convection-diffusion with modifiedriemann-liouville derivative was obtained with the help of fractional variational iteration method (fvim). a newapplication of fractional variational iteration method (fvim) was extended to derive analytical solutions in theform of a series for this equation. it is indicated that the so...
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
Absorption of acoustic wave propagation in a large variety of lossy media is characterized by an empirical power law function of frequency, 0j!j y . It has long been noted that the exponent y ranges from 0 to 2 for diverse media. Recently, the present author [J. Acoust. Soc. Am. 115 (2004) 1424] developed a fractional Laplacian wave equation to accurately model the power law dissipation, which ...
the performance of water flooding can be investigated by using either detail numerical modeling or simulation, or simply through the analytical buckley-leverett (bl) model. the buckley-leverett analytical technique can be applied to one-dimensional homogeneous systems. in this paper, the impact of heterogeneity on water flooding performance and fractional flow curve is investigated. first, a ba...
The fractional diffusion equation is derived from the master equation of continuous time random walks (CTRWs) via a straightforward application of the GnedenkoKolmogorov limit theorem. The Cauchy problem for the fractional diffusion equation is solved in various important and general cases. The meaning of the proper diffusion limit for CTRWs is discussed.
Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations with the averaging with respect to fast variable is used. The main assumption is that the correlator of probability densities of particles to make a step has a power-law dependence. As a result,...
the purpose of this letter is to revisit the nonlinear reaction-diusion modelin porous catalysts when reaction term is fractional function of the concen-tration distribution of the reactant. this model, which originates also in uidand solute transport in soft tissues and microvessels, has been recently givenanalytical solution in terms of taylors series for dierent family of reactionterms. we...
We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived f...
Fractional calculus is a natural extension of the integer order calculus and recently, a large number of applied problems have been formulated on fractional di¤erential equations. Analytical solution of many applications, where the fractional di¤erential equations appear, cannot be established. Therefore, cubic polynomial spline function is considered to nd approximate solution for fractional ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید