We investigate the behavior of standard bases (in the sense of Hironaka and Grauert) for ideals in rings of formal power series over commutative rings with respect to specializations of the coefficients. For instance, we show that any ideal I of the ring of formal power series A[[X]] = A[[X1, . . . , XN ]] with coefficients in a Noetherian ring A admits a standard basis whose image under every ...